Multimodal Neuromonitoring of ICP and p_{bt}O₂ in Severe Traumatic Brain Injury

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

There it i

Stefan Wolf stefan.wolf@charite.de

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

and and a second second second

CHARITE-

KRANKENHAUS

Lecture honoraria and equipment from:

- Integra Neuroscience, USA
- Raumedic AG, Germany
- Sophysa, France

- ICP current Brain Trauma Foundation Guidelines
- Problems with fixed ICP thresholds
- Why do we need additional parameters besides ICP and CPP?
- p_{bt}O₂ monitoring in TBI
- Relationship of p_{bt}O₂ monitoring with outcome

Carney, Neurosurgery 2017

Торіс	Recommendations
Blood pressure thresholds	Level III
	 Maintaining SBP at ≥100 mm Hg for patients 50 to 69 years old or at ≥110 mm Hg or above for patients 15 to 49 or >70 years old may be considered to decrease mortality and improve outcomes.
Intracranial pressure thresholds	Level IIB
	 Treating ICP >22 mm Hg is recommended because values above this level are associated with increased mortality.
	Level III
	• A combination of ICP values and clinical and brain CT findings may be used to make management decisions.
	*The committee is aware that the results of the RESCUEicp trial ² were released after the completion of these
	Guidelines. The results of this trial may affect these recommendations and may need to be considered by treating physicians and other users of these Guidelines. We intend to update these recommendations if needed. Updates will be available at https://braintrauma.org/coma/guidelines.
Cerebral perfusion pressure thresholds	Level IIB
	 The recommended target CPP value for survival and favorable outcomes is between 60 and 70 mm Hg. Whether 60 or 70 mm Hg is the minimum optimal CPP threshold is unclear and may depend upon the autoregulatory status of the patient.
	Level III
	 Avoiding aggressive attempts to maintain CPP >70 mm Hg with fluids and pressors may be considered because of the risk of adult respiratory failure.
Advanced cerebral monitoring thresholds	Level III
	• Jugular venous saturation of <50% may be a threshold to avoid in order to reduce mortality and improve outcomes.

^aCPP, cerebral perfusion pressure; CT, computed tomography; ICP, intracranial pressure; RESCUEicp trial, Randomised Evaluation of Surgery with Craniectomy for Uncontrollable Elevation of ICP; SBP, systolic blood pressure. ^bBold: New or revised recommendations.

Carney, Neurosurgery 2017

Горіс	Recommendations		
Blood pressure thresholds	Level III		
	 Maintaining SBP at ≥100 mm Hg for patients 50 to 69 years old or at ≥110 mm Hg or above for patients 15 to 49 or >70 years old may be considered to decrease mortality and improve outcomes. 		
Intracranial pressure thresholds	Level IIB		
	 Treating ICP >22 mm Hg is recommended because values above this level are associated with increased mortality. 		
	Level III		
	• A combination of ICP values and clinical and brain CT findings may be used to make management decisions. *The committee is aware that the results of the RESCUEicp trial ² were released after the completion of these		
	Guidelines. The results of this trial may affect these recommendations and may need to be considered by treating physicians and other users of these Guidelines. We intend to update these recommendations if needed. Updates will be available at https://braintrauma.org/coma/guidelines.		
Cerebral perfusion pressure thresholds	Level IIB		
	 The recommended target CPP value for survival and favorable outcomes is between 60 and 70 mm Hg. Whether 60 or 70 mm Hg is the minimum optimal CPP threshold is unclear and may depend upon the autoregulatory status of the patient. 		
	Level III		
	 Avoiding aggressive attempts to maintain CPP >70 mm Hg with fluids and pressors may be considered because of the risk of adult respiratory failure. 		
Advanced cerebral monitoring thresholds	Level III		
	 Jugular venous saturation of <50% may be a threshold to avoid in order to reduce mortality and improve outcomes. 		

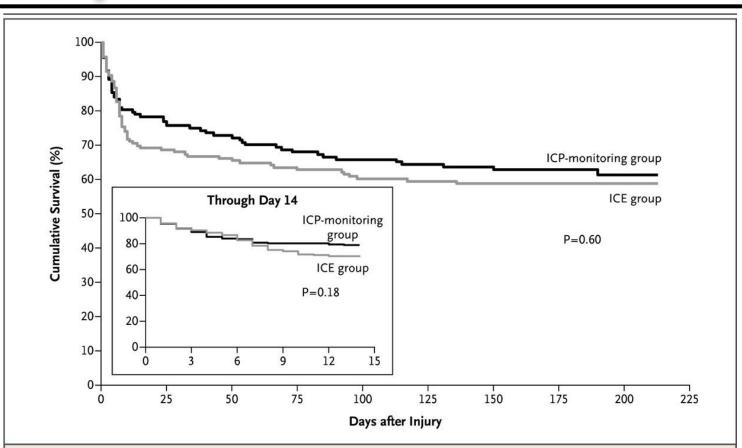
^aCPP, cerebral perfusion pressure; CT, computed tomography; ICP, intracranial pressure; RESCUEicp trial, Randomised Evaluation of Surgery with Craniectomy for Uncontrollable Elevation of ICP; SBP, systolic blood pressure. ^bBold: New or revised recommendations.

Carney, Neurosurgery 2017

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

DECEMBER 27, 2012


VOL. 367 NO. 26

A Trial of Intracranial-Pressure Monitoring in Traumatic Brain Injury

Randall M. Chesnut, M.D., Nancy Temkin, Ph.D., Nancy Carney, Ph.D., Sureyya Dikmen, Ph.D., Carlos Rondina, M.D.,
 Walter Videtta, M.D., Gustavo Petroni, M.D., Silvia Lujan, M.D., Jim Pridgeon, M.H.A., Jason Barber, M.S.,
 Joan Machamer, M.A., Kelley Chaddock, B.A., Juanita M. Celix, M.D., Marianna Cherner, Ph.D., and Terence Hendrix, B.A.

Is ICP monitoring useful at all?

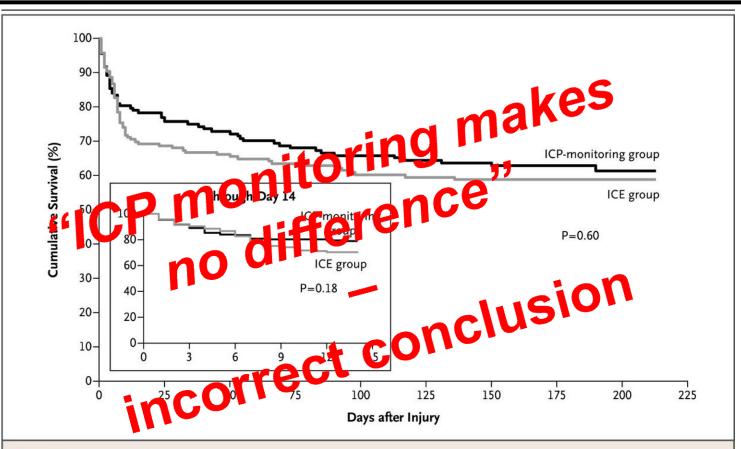


Figure 1. Cumulative Survival Rate According to Study Group.

A Kaplan–Meier survival plot based on the prespecified analysis shows the cumulative survival rate at 6 months among patients assigned to imaging and clinical examination (ICE) as compared with those assigned to intracranial-pressure (ICP) monitoring (hazard ratio for death, 1.10; 95% confidence interval [CI], 0.77 to 1.57). The inset shows the results of the post hoc analysis at 14 days (hazard ratio, 1.36; 95% CI, 0.87 to 2.11).

Chesnut et al., NEJM 2012

Is ICP monitoring useful at all?

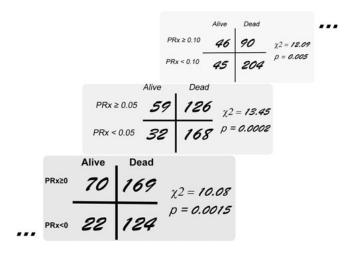
Figure 1. Cumulative Survival Rate According to Study Group.

A Kaplan–Meier survival plot based on the prespecified analysis shows the cumulative survival rate at 6 months among patients assigned to imaging and clinical examination (ICE) as compared with those assigned to intracranial-pressure (ICP) monitoring (hazard ratio for death, 1.10; 95% confidence interval [CI], 0.77 to 1.57). The inset shows the results of the post hoc analysis at 14 days (hazard ratio, 1.36; 95% CI, 0.87 to 2.11).

Chesnut et al., NEJM 2012

Горіс	Recommendations		
Blood pressure thresholds	Level III		
	 Maintaining SBP at ≥100 mm Hg for patients 50 to 69 years old or at ≥110 mm Hg or above for patients 15 to 49 or >70 years old may be considered to decrease mortality and improve outcomes. 		
Intracranial pressure thresholds	Level IIB		
	 Treating ICP >22 mm Hg is recommended because values above this level are associated with increased mortality. 		
	Level III		
	• A combination of ICP values and clinical and brain CT findings may be used to make management decisions. *The committee is aware that the results of the RESCUEicp trial ² were released after the completion of these		
	Guidelines. The results of this trial may affect these recommendations and may need to be considered by treating physicians and other users of these Guidelines. We intend to update these recommendations if needed. Updates will be available at https://braintrauma.org/coma/guidelines.		
Cerebral perfusion pressure thresholds	Level IIB		
	 The recommended target CPP value for survival and favorable outcomes is between 60 and 70 mm Hg. Whether 60 or 70 mm Hg is the minimum optimal CPP threshold is unclear and may depend upon the autoregulatory status of the patient. 		
	Level III		
	 Avoiding aggressive attempts to maintain CPP >70 mm Hg with fluids and pressors may be considered because of the risk of adult respiratory failure. 		
Advanced cerebral monitoring thresholds	Level III		
	 Jugular venous saturation of <50% may be a threshold to avoid in order to reduce mortality and improve outcomes. 		

^aCPP, cerebral perfusion pressure; CT, computed tomography; ICP, intracranial pressure; RESCUEicp trial, Randomised Evaluation of Surgery with Craniectomy for Uncontrollable Elevation of ICP; SBP, systolic blood pressure. ^bBold: New or revised recommendations.


Carney, Neurosurgery 2017

459 patients from the TBI database Cambridge, UK

mean values of whole monitoring time

stepwise χ^2 -Test

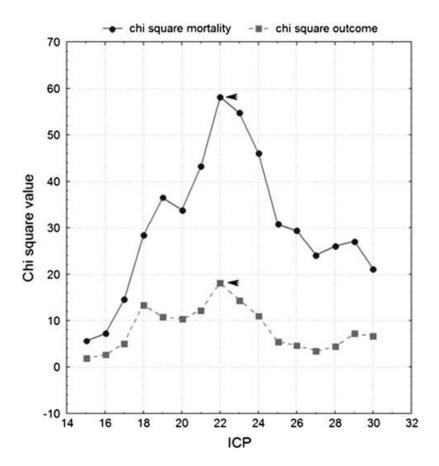
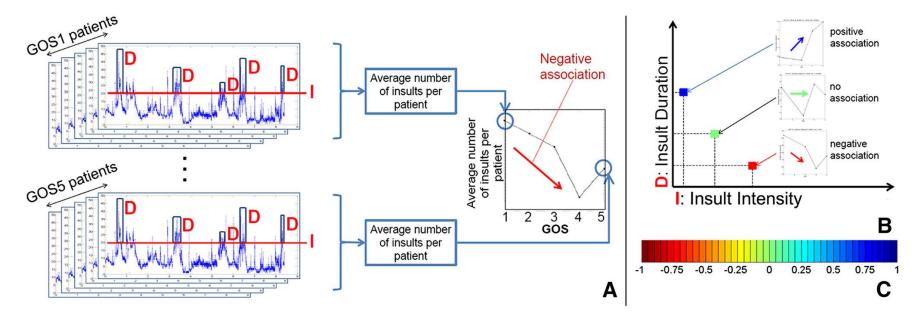


Fig. 4 Thresholds for ICP. *Arrows* indicate that 22 mmHg was the value returning the highest chi square scores for both mortality and outcome, and therefore the optimal threshold

Sorrentino, Neurocrit Care 2012, 16: 258-266

Klinik für Neurochirurgie

	n	Threshold for survival	Sensitivity (%) Specificity (%)	Threshold for favorable outcome	Sensitivity (%) Specificity (%)
All patients	459	22 (58.18, P < 0.001)	63	22 (18.15, $P < 0.001$)	81
			82		48
>55 years	77	21 (5.60, $P = 0.018$)	75	18 (5.14, $P = 0.023$)	90
			62		36
\leq 55 years	382	23 (58.56, $P < 0.001$)	66	22 (15.78, $P < 0.001$)	78
			85		52
Females	102	23 (10.38, $P < 0.001$)	78	18 (8.23, $P = 0.004$)	80
			82		51
Males	357	22 (44.97, $P < 0.001$)	62	22 (14.07, $P < 0.001$)	79
			82		49
$GCS \le 8$	338	22 (43.76, $P < 0.001$)	66	22 (13.68, $P < 0.001$)	84
			80		45
$GCS \ge 9$	121	20 (11.46, P < 0.001)	40	NS	NS
			89		


 Table 1
 Thresholds for ICP in mmHg

Sorrentino, Neurocrit Care 2012, 16: 258-266

Klinik für Neurochirurgie

Intensity and duration of ICP raise vs outcome

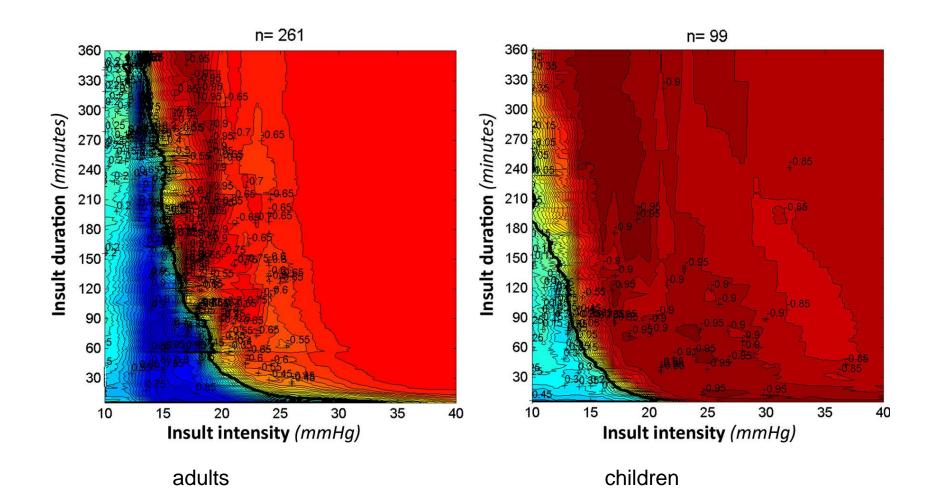
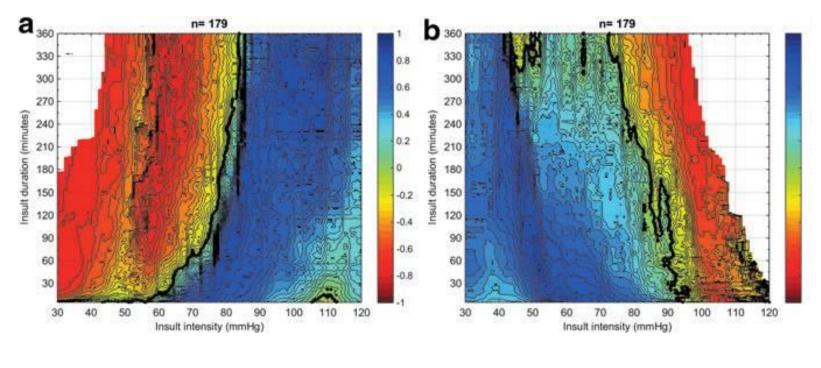


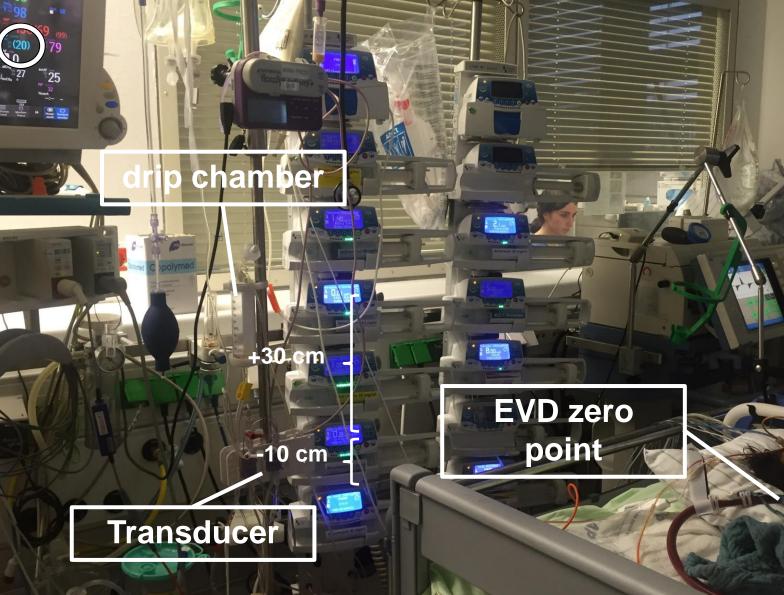
Fig. 1 Visualization methodology. The average number of insults of ICP above an intensity threshold I (in mmHg), lasting for at least a duration threshold D (in minutes) is computed for each GOS category and the Pearson correlation is computed (**a**). The

correlation between GOS and the average number of insults per GOS category is computed for all I and D combinations (**b**) and given a colour according to a predefined colour map ranging from -1 in *dark red* to +1 in *dark blue* (**c**)


360 patients from the BRAIN-IT database

Güiza et al., ICM 2015

Güiza et al., ICM 2015

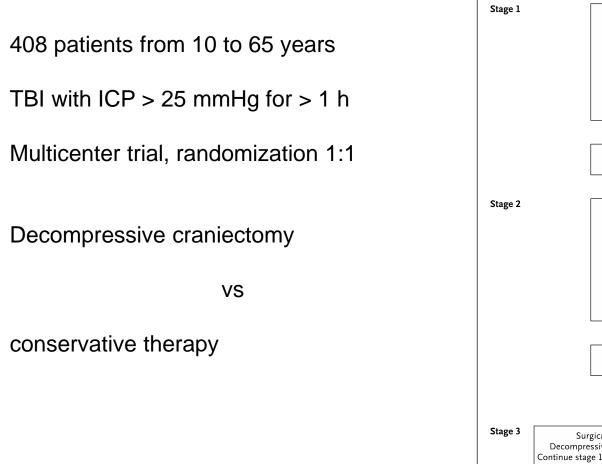

CPP: both too low and too high are bad

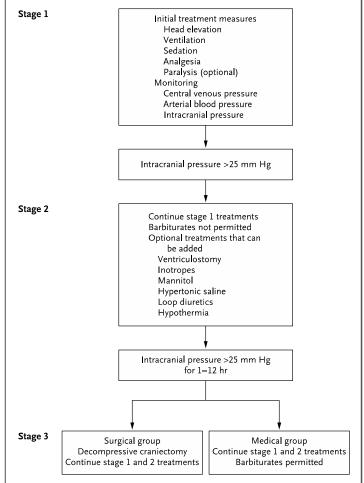
low CPP

high CPP

Güiza et al., J Neurotrauma 2017

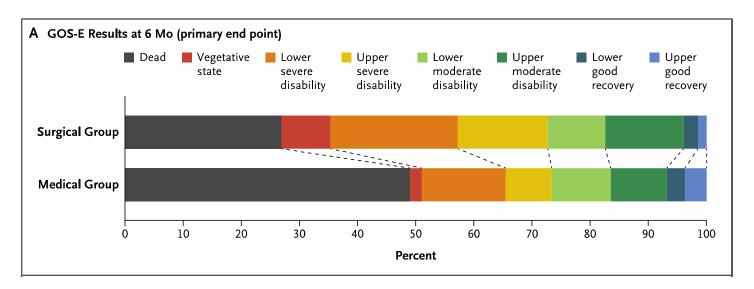
An example from Charité, 2016


Торіс	
ajor problem	C • Level III
	to 49 or >70 years old may be considered to decrease mortality and improve outcomes.
Intracranial pressure thresho	
No referenc	e of the zeroing level of APB and ICP associated with increase Level III
	• A combination of ICP values and clinical and brain CT findings may be used to make management decisions.
Error depen – EVD:	The committee is away that the results of the RESCUEicp trial ² were released after the completion of these indentions and may need to be considered by treating physicians and other users of these Guidelines. We intend to update these recommendations if needed. Updat will be available at https://braintrauma.org/coma/guidelines.
Cerebral perfusion pressure threshold	f ICP sensitive to zeroing error
	orrect (if ABP and ICP zeroed on the same level)
– parench	ymal in problements to maintain CPP >70 mm Hg with fluids and pressors may be considered because in problements to maintain CPP >70 mm Hg with fluids and pressors may be considered because in the second seco
Advanced core CP CO	
CPP se	nsitive to zeroing errors of ABP der to reduce mortality and improve


be the second of the second of

Bold: New or revised recommendations.

Carney, Neurosurgery 2017



Hutchinson et al: NEJM 2016, 375: 1119-1130

RESCUEicp: results

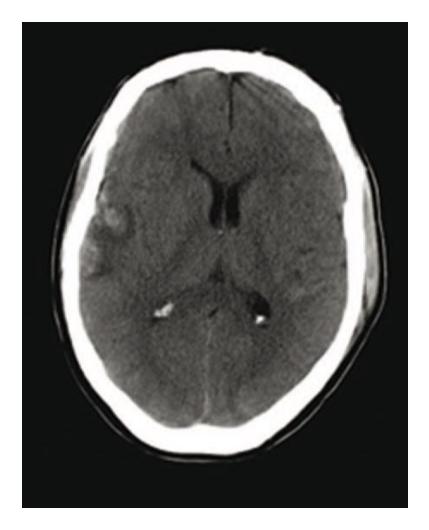
difference between treatment groups: p < 0.001

Upper severe disability or better: 42,8% in surgical group 34,6% in conservative group p= 0.12

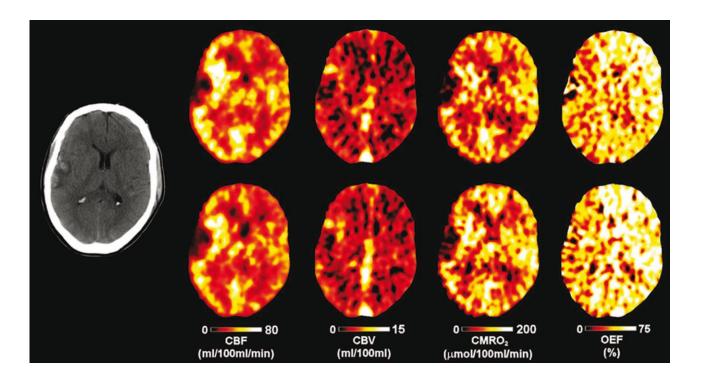
Hutchinson et al: NEJM 2016, 375: 1119-1130

•	Surgical Group	Medical Group	Absolute Difference (95% CI)
JIICEQIIII JIII & EEDE ESS ■ 🕆			•
JII CEQIMO E JINGE E CO			

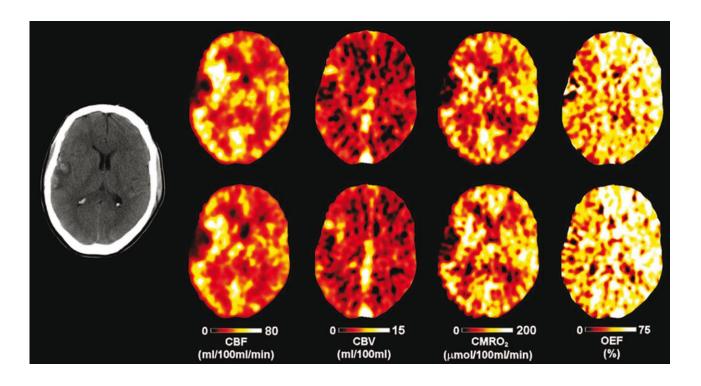
•	Surgical Group	Medical Group	Absolute Difference (95% CI)
JIICEQI##EJI®&EE#E®SS∎⊕			•
JII CEQIMAE JIM & ETA ES			


RESCUEicp: Class 1 evidence for ICP monitoring (the same as the EUROTHERM 3235 or DECRA trials)

ICP monitoring is about correct decision making – whom to treat and when with which method!


Hutchinson et al: NEJM 2016, 375: 1119-1130

Why it is not enough to measure just ICP



pCO2: 35 mmHg ICP: 22 mmHg

pCO2: 29 mmHg ICP: 17 mmHg

Coles, CCM 2007

pCO2: 35 mmHg ICP: 22 mmHg

pCO2: 29 mmHg ICP: 17 mmHg

Ischemic brain volume: 44 ml vs 135 ml

Coles, CCM 2007

Торіс	Recommendations				
Intracranial pressure monitoring	Level IIB • Management of severe TBI patients using information from ICP monitoring is recommended to reduce in hospital and 2-week post-injury mortality.				
	Recommendations from the prior (Third) Edition not supported by evidence meeting current standards. ICP should be monitored in all salvageable patients with a TBI (GCS 3-8 after resuscitation) and an abnormal CT scan. An abnormal CT scan of the head is one that reveals hematomas, contusions, swelling, herniation, or compressed basal cisterns.				
	ICP monitoring is indicated in patients with severe TBI with a normal CT scan if \geq 2 of the following features are noted at admission: age >40 years, unilateral or bilateral motor posturing, or SBP <90 mm Hg.				
Cerebral perfusion pressure monitoring	Level IIB				
	 Management of severe TBI patients using guidelines-based recommendations for CPP monitoring is recommended to decrease 2-wk mortality. 				
Advanced cerebral monitoring	 Level III Jugular bulb monitoring of AVDO₂, as a source of information for management decisions, may be considered to reduce mortality and improve outcomes at 3 and 6 mo post-injury. 				

^aAVDO₂, arteriovenous oxygen content difference; CPP, cerebral perfusion pressure; CT, computed tomography; GCS, Glasgow Coma Scale; ICP, intracranial pressure; SBP, systolic blood pressure; TBI, traumatic brain injury.

^bBold: New or revised recommendations.

Carney, Neurosurgery 2017

Jugular bulb oximetry?

Advanced cerebral monitoring thresholds	Level III	
	• Jugular venous saturation of <50% may be a threshold to avoid in order to reduce mortality and improve outcomes.	

"CPP, cerebral perfusion pressure; CT, computed tomography; ICP, intracranial pressure; RESCUEicp trial, Randomised Evaluation of Surgery with Craniectomy for Uncontrollable Elevation of ICP; SBP, systolic blood pressure.

^bBold: New or revised recommendations.

	Jugular Bulb M	Ionitoring of Arteriovenous Oxygen (Content Differen	ce
	Cruz, 1998 ¹⁰	Prospective, controlled but non-	Class 3	Outcome at 6 months by GOS improved in patients
		randomized and non-blinded study		who underwent SjO_2 and $AVDO_2$ monitoring.
haaad an		of 353 TBI patients undergoing		
based on:		continuous jugular bulb saturation		Monitoring SjO ₂ may improve outcome in severe
		and cerebral extraction of oxygen		TBI. However, caution must be utilized in
		(AVDO ₂) monitoring, in which		interpreting the results of this study as the non-
		GOS at 6 months was compared		randomized, non-blinded nature of the study may
		between patients who underwent		introduce treatment bias.
		monitoring and those who did not.		
	Le Roux 1997 ¹¹	Prospective, observational study of	Class 3	A limited improvement in elevated AVDO ₂ after
		32 TBI patients with GCS ≤ 8 who		treatment (craniotomy or mannitol administration)
		underwent jugular bulb oxygen and		was significantly associated with delayed cerebral
		$AVDO_2$ monitoring, in which the		infarction and unfavorable outcome.
		incidence of delayed cerebral infarction and GOS at 6 months		Leele of more of SiO to tractment more
				Lack of response of SjO_2 to treatment measures
		post-injury was assessed.		may be associated with poor outcome in severe TBI.
	Robertson	Prospective, observational study of	Class 3	The number of episodes of desaturation were found
	1993 ¹²	SjO ₂ monitoring in 116 TBI		to be associated with mortality as follows:
		patients (100 with closed head		no desaturation episodes:
		injury and 16 with penetrating head		mortality 18%
		injury) in which desaturation		one desaturation episode:
		episodes (SjO ₂ $<$ 50%) were		mortality 46%
		monitored and correlated to GOS at		multiple desaturation episodes:
		3 months post-injury.		mortality 71%.
				Episodes of desaturation are related to mortality
				and GOS at 3 months.

Carney, Neurosurgery 2017

Crit Care Med. 1998 Feb;26(2):344-51.

The first decade of continuous monitoring of jugular bulb oxyhemoglobinsaturation: management strategies and clinical outcome.

<u>Cruz J¹.</u>

Author information

Abstract

OBJECTIVE: To comparatively assess outcome of patients undergoing monitoring and management of cerebral extraction of oxygen along with cerebral perfusion pressure vs. outcome of patients undergoing monitoring and management of cerebral perfusion pressure alone in severe acute brain trauma.

DESIGN: Prospective, interventional study.

SETTING: Intensive care unit of a university hospital.

PATIENTS: Adults (n = 353) with severe acute brain trauma. A group of 178 patients underwent continuous monitoring and management of cerebral extraction of oxygen and cerebral perfusion pressure, while a control group of 175 patients underwent monitoring and management of cerebral perfusion pressure only.

INTERVENTIONS: Routine neuroemergency procedures.

MEASUREMENTS AND MAIN RESULTS: The two groups of patients were matched with regard to age, postresuscitation Glasgow Coma Scale scores, rates of acute surgical intracranial hematomas and brain swelling, pupillary abnormalities, early hypotensive events (before intensive care monitoring), as well as initial levels of intracranial pressure and cerebral perfusion pressure. Outcome at 6 months post injury was significantly better (p < .00005) in the 178 patients undergoing monitoring and management of cerebral extraction of oxygen along with cerebral perfusion pressure, than in the control group of 175 patients undergoing monitoring and management of cerebral perfusion pressure alone.

Crit Care Med. 1998 Feb;26(2):344-51.

The first decade of continuous monitoring of jugular bulb oxyhemog management strategies and clinical outcome.

Cruz J¹.

Author information

Abstract

OBJECTIVE: To comparatively assess outcome of patients undergoing monitoring and management with cerebral perfusion pressure vs. outcome of patients Which allocation strate severe acute brain trauma.

DESIGN: Prospective, interventional study.

SETTING: Intensive cale unit of a university hospital.

PATIENTS: Adults (n = 353) with severe acute brain trauma. A group of 178 patients underwent concerebral extraction of oxygen and cerebral perfusion pressure, while a control group of 175 patients of cerebral perfusion pressure only.

INTERVENTIONS: Routine neuroemergency procedu.

MEASUREMENTS AND MAIN RESULTS: The two groups of patients were matched with regard to a Scale scores, rates of acute surgical intracranial hematomas and brain swelling, pupillary abnorma intensive care monitoring), as well as initial levels of intracranial pressure and cerebral perfusion pr was significantly better (p < .00005) in the 178 patients undergoing monitoring and management of

	$\begin{array}{c} {\rm CEO}_2 {\rm Group} \\ (n=178) \end{array}$	CPP Group (n = 175)
Age $(yr)^a$	30 ± 9	29 ± 8
GCS score ^a	5.5 ± 1	5.6 ± 1.2
ICP (mm Hg) ^a	33 ± 6	31 ± 5
CPP (mm Hg) ^a	56 ± 6	59 ± 7
EAH $(\%)^b$	14	11
PA (%)	29	32
SLV (%)	100	100
CBC (%)	64	62
AICH (%)	33	35

CEO₂, cerebral extraction of oxygen; CPP, initial cerebral perfusion pressure; GCS, postresuscitation Glasgow Coma Scale scores; ICP, initial intracranial pressure; EAH, early arterial hypotension; PA, pupillary abnormalities (excluding direct ocular trauma); SLV, small lateral ventricles; CBC, compromised basilar cisterns; AICH, acute intracranial hematomas on computed tomography scans of the head.

^aMean ± sD; ^bEAH values before monitoring ICP and CPP.

No statistically significant differences were found.

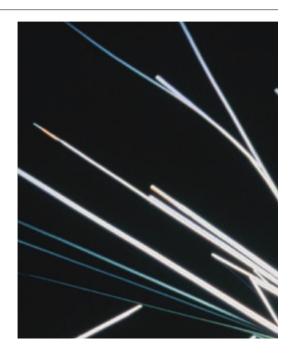
cerebral perfusion pressure, than in the control group of 175 patients undergoing monitoring and management or cerebral perfusion pressure alone.

The work of Dr. Cruz?

Crit Care Med. 1998 Feb;26(2):344-51.

The first decade of continuous monitoring of jugular bulb oxyhemog

management strategies and clinical outcome.					$CEO_2 Group$ (n = 178)	$\begin{array}{l} CPP \ Group \\ (n = 175) \end{array}$
<u>Cruz J</u> ¹ .				Age $(yr)^a$	30 ± 9	29 ± 8
Author information		GCS score ^a	5.5 ± 1	5.6 ± 1.2		
				ICP (mm Hg) ^a	33 ± 6	31 ± 5
Abstract				CPP $(mm Hg)^a$ EAH $(\%)^b$	$56 \pm 6 \\ 14$	59 ± 7 11
OBJECTIVE: To comparatively assess outcome of patie	nte undergoing moni	toring and m	anagemer	PA(%)	29	32
with cerebral perfusion pressure vs. outcome of patient	Which allo	cation	strate	SLV (%)	100	100
severe acute brain trauma.			Strate	CBC (%)	64	62
				AICH (%)	33	35
DESIGN: Prospective, interventional study.				CEO, cere	bral extractio	n of oxygen:
SETTING: Intensive care unit of a university hospital. CEO ₂ , cerebral extraction of oxygen CPP, initial cerebral perfusion pressure GCS, postresuscitation Glasgow Coma Scale						ion pressure;
PATIENTS: Adults (n = 353) with severe acute brain tra-	uma A group of 179	nationta und		GCS, postresus	itial intraara	vial prossure:
cerebral extraction of oxygen and cerebral perfusion pl		C 14		9	U.D.	m + 1
of cerebral perfusion pressure only.		G-M		S	V-D	Total
	$\operatorname{CEO}_2\operatorname{Group}(\%)$	132 (74)				178 (100)
INTERVENTIONS: Routine neuroemergency procedu	CPP Group (%)	98 (56)	21	. (12)	56 (32)	175 (100)
MEASUREMENTS AND MAIN RESULTS: The two grou	Distribution of p					
Scale scores, rates of acute surgical intracranial hema	"cerebral perfusion the Glasgow Outco					
intensive care monitoring), as well as initial levels of in	disability; V-D, vege					
was significatly better (p < .00005) in the 178 patients						
cerebral perfusion pressure, than in the control group c	Table 1. Six-month	outcome in	two group	os of patients		
alone.						


The work of Dr. Cruz?	The Con]			
The work of Di. Ordz:		nprehensive				
	Internati	onal Center				
Crit Care Med. 1998 Feb;26(2):344-51.		for				
The first decade of continu	Nouroor	-	ulb oxyhemog	<u></u>	4.	
management strategies an		nergencies,			CEO _o Group	CPP Group
	Cx. Po	stal 57011,			(n = 178)	(n = 175)
<u>Cruz J¹.</u>	Sao Pa	ulo, Brazil		Age $(yr)^a$	30 ± 9	29 ± 8
Author information			J	GCS score ^a	5.5 ± 1	5.6 ± 1.2
				ICP (mm Hg) ^a	33 ± 6	31 ± 5
Abstract				$CPP (mm Hg)^a$	56 ± 6	59 ± 7
OBJECTIVE: To comparatively assess outcome of patients undergoing monitoring and management				EAH $(\%)^b$	14	11 32
				IA(10)	29 100	32 100
				$\operatorname{CBC}(\%)$	64	62
severe acute brain trauma.				AICH (%)	33	35
DESIGN: Prospective interventional study						
SETTING: Intensive and unit of a university beautiful				CEO ₂ , cerebral extraction of oxygen; CPP, initial cerebral perfusion pressure;		
SETTING: Intensive cale unit of a university hospital.				GCS, postresus		
PATIENTS: Adults (n = 353) with severe acute bigin traume. A group of 179 patients underwort out according to the initial intervential pressures						
cerebral extraction of oxygen and cere	bral perfusion p					
			G-M	S	V-D	Total
of cerebral perfusion pressure only.		CEO, Group (%)	132 (74)	25 (14)	21 (12)	178 (100)
INTERVENTIONS: Routine neuroemerg	gency procedu	CPP Group (%)				175 (100)
MEASUREMENTS AND MAIN RESULTS: The two grou						
"cerebral perfusion pressure (CPP) group "according to three major outcom						
Scale scores, rates of acute surgical intracranial hema the Glasgow Outcome Sca						
intensive care monitoring), as well as initial levels of in disability; V-D, vegetation			tive state or death. A	significant differe	ence was found	(p < .00005).
was significately better (p < .00005) in the 178 patients						
cerebral perfusion pressure, than in the	Table 1. Six-month o	outcome in two grou	ps of patients			
alone.						

RESEARCH ETHICS

Downloaded from bmj.com on 25 February 2007

Doubts over head injury studies

Patients are receiving treatment that may be unsound as investigations by **Ian Roberts, Richard Smith, and Stephen Evans** raise questions about whether influential trials of high dose mannitol ever took place

Roberts, BMJ 2007

RESEARCH ETHICS

Downloaded from bmj.com on 25 February 2007

"We are left with serious doubt about important studies but with no way of determining with confidence whether the results are fabricated or real. The main author is dead. There is no institution to investigate. The implications for patients are serious. Patie They are being treated on the basis of potentially investigations by lan Roberts, unreliable evidence. " Stephen Evans raise questions about whether influential trials of high dose mannitol ever took place

Roberts, BMJ 2007

Official Journal of the Society of Critical Care Medicine

tical

February 2017 + Volume 45 + Number 2

Society of Critical Care Medicine

FEATURE ARTICLES

Physician-Assisted Suicide and Euthanasia in the ICU: A Dialogue on Core Ethical Issues

www.comjournal.org

Greater Protein and Energy Intake May Bo Associated With Improved Mortality in Higher Risk. Cotically III Patients: A Multicenter, Multinational Observational Study

Long-Term Survival in Adults Treated With Extracorporeal Membrane Oxygenation for Respiratory Falure and Sepsis

Improving Hospital Survival and Reducing Brain Dysfunction at Seven California Community Hospitalis: Implementing PAD Guidelines Via the ABCDEF Bundle in 6,064 Patients

Accuracy of Laboratory Data Communication on ICU Daily Rounds Using an Electronic Health Record

Metrics of Arterial Hyperoxia and Associated Outcomes in Critical Care

Healthcare Resource Use and Costs in Long-Term Survivors of Acute Respiratory Distress Syndrome: A 5-Year Longitudinal Cohort Study

LATE BREAKER ARTICLE Readmissions to Intensive Care: A Prospective Multicenter Study in Australia and New Zealand

Wolters Kluwer

The first decade of continuous monitoring of jugular bulb oxyhemoglobin saturation: Management strategies and clinical outcome

Cruz, Julio MD, PhD

Critical Care Medicine . 26(2):344-351, February 1998.

Author Information

From the Department of Neurosurgery, Allegheny University of the Health Sciences, Philadelphia, PA, and The Comprehensive International Center for Neuroemergencies, Sao Paulo, Brazil.

Address requests for reprints to: Dr. Julio Cruz, CICNEM, Cx. Postal 57011, Sao Paulo, SP 04093,

The first decade of continious monitoring of juga a. Fulb oxyhemoglobin saturation: Management strategies and clinical our oue

Cruz, Julio MD, PhD

Critical Care Medicine . 26(2):344-351, February 1998.

Author Information

From the Department of Neurosurgery, Allegheny University of the Health Sciences, Philadelphia, PA, and The Comprehensive International Center for Neuroemergencies, Sao Paulo, Brazil.

Address requests for reprints to: Dr. Julio Cruz, CICNEM, Cx. Postal 57011, Sao Paulo, SP 04093,

J Neurosurg 85:751–757, 1996

Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue PO_2 versus jugular vein oxygen saturation

KARL L. KIENING, M.D., ANDREAS W. UNTERBERG, M.D., PH.D., TILLMAN F. BARDT, B.S., GERD-HELGE SCHNEIDER, M.D., AND WOLFGANG R. LANKSCH, M.D., PH.D.

Department of Neurosurgery, Virchow Medical Center, Humboldt-University of Berlin, Berlin, Germany

Monitoring of cerebral oxygenation is considered to be of great importance in minimizing secondary hypoxic and ischemic brain damage following severe head injury. Although the threshold for cerebral hypoxia in jugular bulb oximetry (measurement of O_2 saturation in the jugular vein (SjvO₂)) is generally accepted to be 50% oxygen saturation, a comparable value in brain tissue PO₂ (PtiO₂) monitoring, a new method for direct assessment of PO₂ in the cerebral white matter, has not yet been established. Hence, the purpose of this study was to compare brain PtiO₂ with SjvO₂ in severely head injured patients during phases of reduced cerebral perfusion pressure (CPP) to define a threshold in brain PtiO₂ monitoring. In addition, the safety and data quality of both SjvO₂ and brain PtiO₂ monitoring were studied.

In 15 patients with severe head injuries, SjvO₂ and brain PtiO₂ were monitored simultaneously. For brain PtiO₂ monitoring a polarographic microcatheter was inserted in the frontal cerebral white matter, whereas for SjvO₂ measurements were obtained by using a fiberoptic catheter placed in the jugular bulb. Intracranial pressure was monitored by means of an intraparenchymal catheter. Mean arterial blood pressure, CPP, end-tidal CO₂, and arterial oxygen saturation (pulse oximetry) were continuously recorded. All data were simultaneously stored and analyzed using a multimodal computer system. For specific analysis, phases of marked deterioration in systemic blood pressure and consecutive reductions in CPP were investigated.

There were no complications that could be attributed to the PtiQ₂ catheters, that is, no intracranial bleeding or infection. The "time of good data quality" was 95% in brain PtiQ₂ compared to 43% in SjvQ₂; PtiQ₂ monitoring could be performed twice as long as SjvQ₂ monitoring. During marked decreases in CPP, SjvQ₂ and brain PtiQ₂ correlated closely. A significant second-order regression curve of SjvQ₂ versus brain PtiQ₂ (p < 0.01) was plotted. At a threshold of 50% in SjvQ₂, brain PtiQ₂ was found to be within the range of 3 to 12 mm Hg, with a regression curve "best fit" value of 8.5 mm Hg. There was a close correlation between CPP and oxygenation parameters (PtiQ₂ and SjvQ₂) when CPP fell below a breakpoint of 60 mm Hg, suggesting intact cerebral autoregulation in most patients.

This study demonstrates that monitoring brain $PtiO_2$ is a safe, reliable, and sensitive diagnostic method to follow cerebral oxygenation. In comparison to $SjvO_2$, $PtiO_2$ is more suitable for long-term monitoring. It can be used to minimize episodes of secondary cerebral maloxygenation after severe head injury and may, hopefully, improve the outcome in severely head injured patients.

J Neurosurg 85:751–757, 1996

Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue PO₂ ve "*Time of good data quality*": saturation S_{jv}O₂: 43% P_{ti}O₂: 95%

KARL L. KIENING, M.D., ANDREAS W. UNTERBEIG GERD-HELGE SCHNEIDER, M.D., AND WOLFGANG R. LANKSCH, M.D., PH.D.

Department of Neurosurgery, Virchow Medical Center, Humboldt-University of Berlin, Berlin, Germany

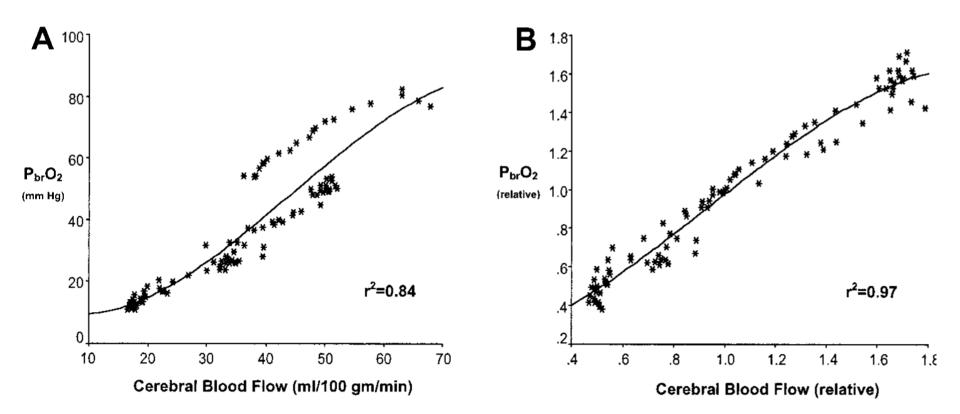
Monitoring of cerebral oxygenation is considered to be of great importance in minimizing secondary hypoxic and ischemic brain damage following severe head injury. Although the threshold for cerebral hypoxia in jugular bulb oximetry (measurement of O_2 saturation in the jugular vein (SjvO₂)) is generally accepted to be 50% oxygen saturation, a comparable value in brain tissue PO₂ (PtiO₂) monitoring, a new method for direct assessment of PO₂ in the cerebral white matter, has not yet been established. Hence, the purpose of this study was to compare brain PtiO₂ with SjvO₂ in severely head injured patients during phases of reduced cerebral perfusion pressure (CPP) to define a threshold in brain PtiO₂ monitoring. In addition, the safety and data quality of both SjvO₂ and brain PtiO₂ monitoring were studied.

In 15 patients with severe head injuries, SjvO₂ and brain PtiO₂ were monitored simultaneously. For brain PtiO₂ monitoring a polarographic microcatheter was inserted in the frontal cerebral white matter, whereas for SjvO₂ measurements were obtained by using a fiberoptic catheter placed in the jugular bulb. Intracranial pressure was monitored by means of an intraparenchymal catheter. Mean arterial blood pressure, CPP, end-tidal CO₂, and arterial oxygen saturation (pulse oximetry) were continuously recorded. All data were simultaneously stored and analyzed using a multimodal computer system. For specific analysis, phases of marked deterioration in systemic blood pressure and consecutive reductions in CPP were investigated.

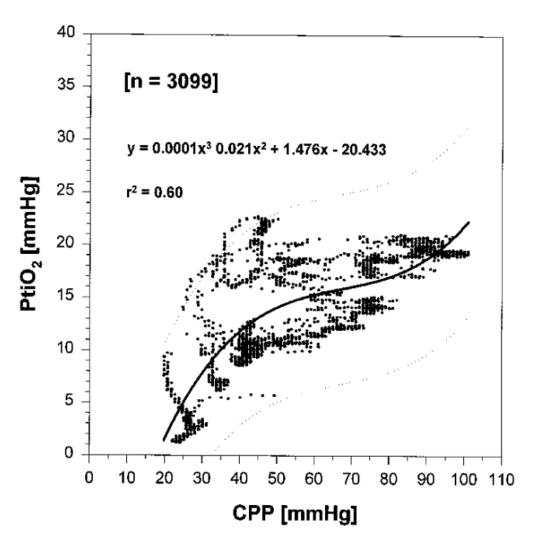
There were no complications that could be attributed to the PtiO₂ catheters, that is, no intercanial bleeding or infection. The "time of good data quality" was 95% in brain PtiO₂ compared to 43% in SjvO₂; PtiO₂ monitoring could be performed twice as long as SjvO₂ monitoring. During marked decreases in CPP. SjvO₂ and brain PtiO₂ correlated closely. A significant second-order regression curve of SjvO₂ versus brain PtiO₂ (p < 0.01) was plotted. At a threshold of 50% in SjvO₂, brain PtiO₂ was found to be within the range of 3 to 12 mm Hg, with a regression curve "best fit" value of 8.5 mm Hg. There was a close correlation between CPP and oxygenation parameters (PtiO₂ and SjvO₂) when CPP fell below a breakpoint of 60 mm Hg, suggesting intact cerebral autoregulation in most patients.

This study demonstrates that monitoring brain $PtiO_2$ is a safe, reliable, and sensitive diagnostic method to follow cerebral oxygenation. In comparison to $SjvO_2$, $PtiO_2$ is more suitable for long-term monitoring. It can be used to minimize episodes of secondary cerebral maloxygenation after severe head injury and may, hopefully, improve the outcome in severely head injured patients.

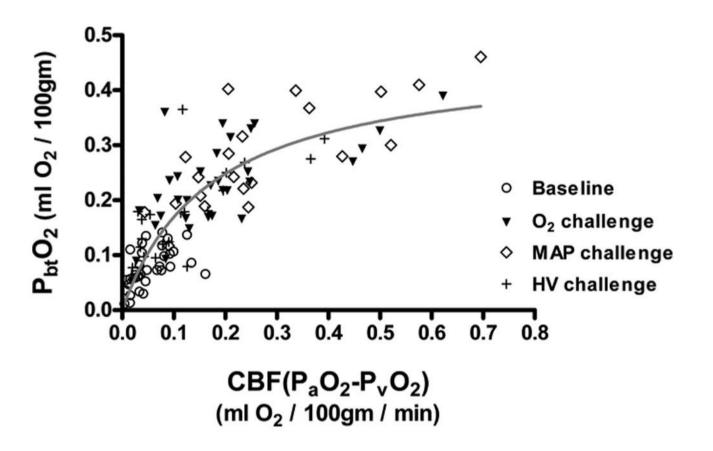
established Standard: Licox – System, since 1995 electrochemic system with Clark electrode, 14 mm² surface



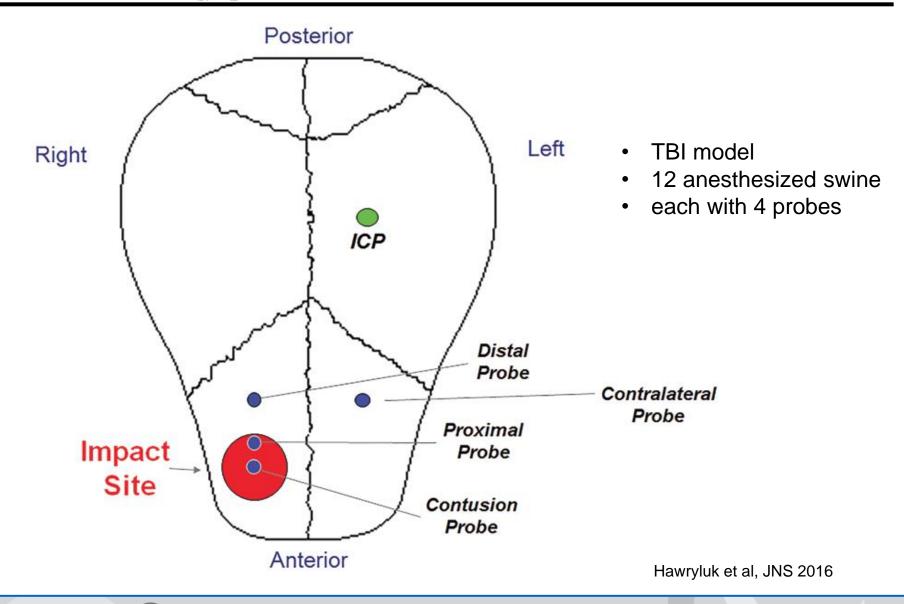
modified in 2005, since then temperature monitoring included in probe



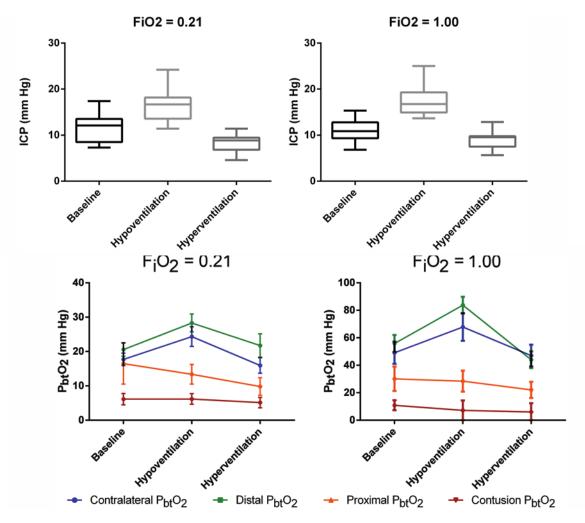
New: Raumedic PTO probes, available since 2006 Optical method, uses luminescence quenching by O_2 22 mm² surface


Advantage: $p_{bt}O_2$, ICP and temperature combined in one probe

Hemphill, Neurosurgery 2001

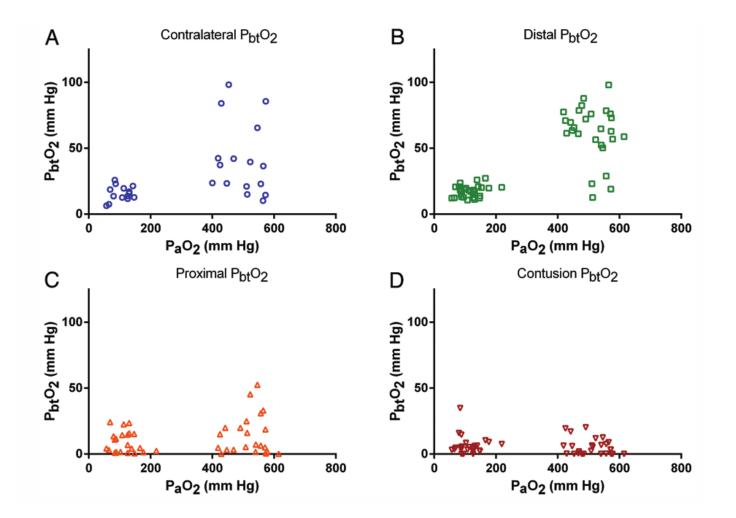


Kiening, JNS 1996

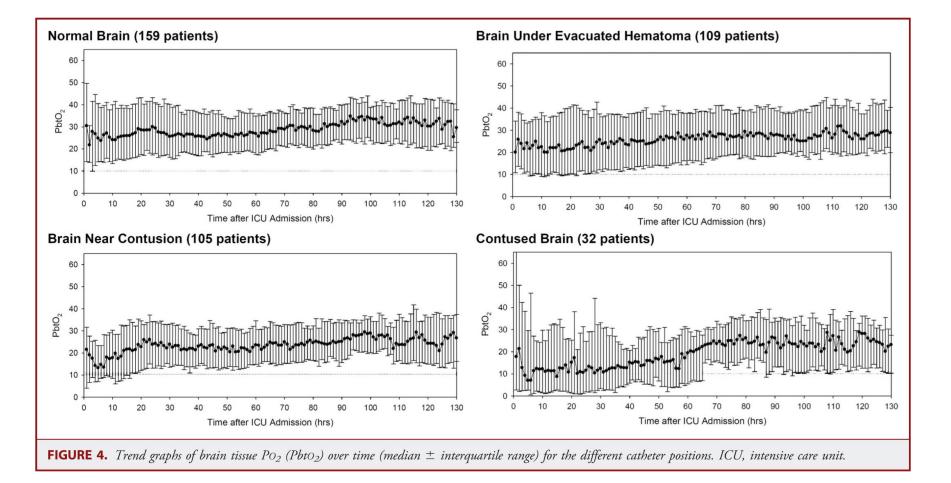


Rosenthal, JNS 2008

Normal values of $p_{br}O_2$ – but which tissue?



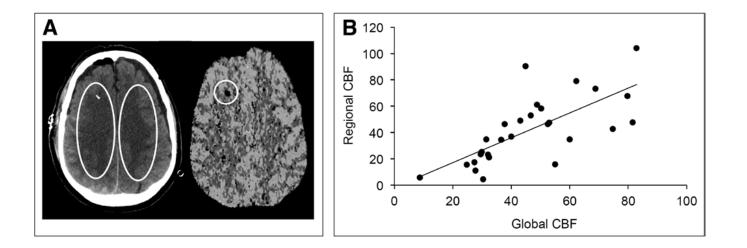
Normal values of $p_{br}O_2$ – but which tissue?



Hawryluk et al, JNS 2016

Normal values of $p_{br}O_2$ – but which tissue?

Hawryluk et al, JNS 2016

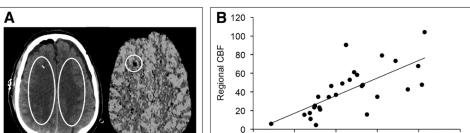

Ponce, Neurosurgery 2012

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

Variable	Favorable Outcome, Mean ± SD, Median (Interquartile Range), or n (%)	Unfavorable Outcome, Mean ± SD, Median (Interquartile Range), or n (%)	Univariate Analysis P
Patients, n	129	276	
Demographic and injury severity variables			
Age	29.4 ± 12.6	37.4 ± 14.7	<.001
Pbto ₂ catheter position			.03
Normal brain	61 (47.3)	98 (35.5)	
Abnormal brain	68 (52.7)	178 (64.5)	
Pbto ₂ Variables			
Average Pbto ₂ , mm Hg	32.2 ± 16.3	25.1 ± 13.5	<.001
Average $Pbto_2 \times catheter position$			
Normal brain	33.8 ± 19.4	31.4 ± 13.1	
Abnormal brain	28.8 ± 12.0	19.5 ± 13.7	
Time Pbto ₂ $<$ 10 mm Hg, h	0 (0-6.25)	6 (0-25.5)	<.001
Time $Pbto_2 < 15 mm$ Hg, h	3 (0-19.25)	16 (3-42)	<.001
Time $Pbto_2 < 20 \text{ mm Hg}$, h	11 (1.75-39.25)	31 (9.0-56.75)	<.001
Pbto ₂ trend pattern			<.001
Never $<$ 10 mm Hg	85 (65.9)	129 (46.7)	
Transiently $<$ 10 mm Hg at start	39 (30.2)	90 (32.6)	
Persistently $<$ 10 mm Hg or decreasing	5 (3.9)	57 (20.7)	

Ponce, Neurosurgery 2012

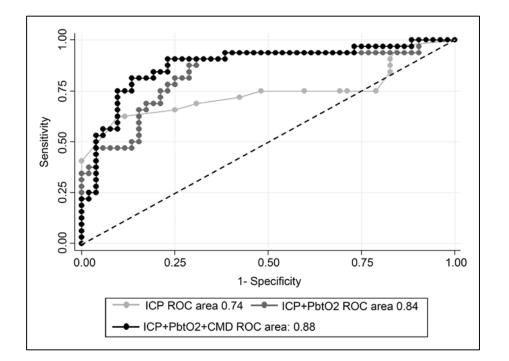
What is the accuracy of multimodal monitoring to detect hypoperfusion?


27 TBI patients

probe placement right frontal, regardless of injury

Bouzat et al, Crit Care Med 2015

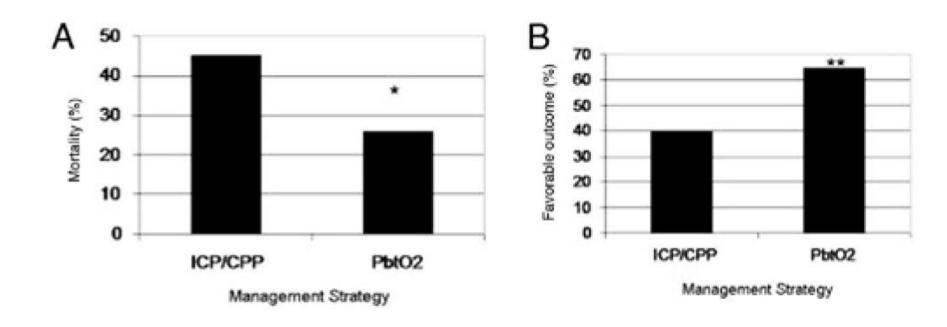
What is the accuracy of multimodal monitoring to detect hypoperfusion?



27 TBI patients

Brain Physiologic Variables	Low rCBF (< 35 mL/100 g/min)	Normal rCBF (≥ 35 mL/100 g/min)	p
CMD glucose (mmol/L)	0.95 (0.41–2.42)	1.38 (0.64–2.18)	< 0.01
CMD glucose < 1 mmol/ (% episodes)	57	22	< 0.01
CMD lactate (mmol/L)	3.15 (1.7–5.0)	3.26 (2.1–5.0)	0.22
CMD pyruvate (µmol/L)	106 (62–182)	118 (75–189)	0.15
CMD glutamate (µmol/L)	6.9 (1.1–372)	7.0 (2.4–26.4)	0.39
CMD LPR	30 (11–44)	28 (14–35)	0.62
CMD LPR $>$ 40 (% episodes)	14	4	0.03
CMD LPR $>$ 25 (% episodes)	70	61	0.24
Pbto ₂ (mm Hg)ª	21 (6–33)	27 (14–39)	< 0.01
$Pbto_2 < 20 mm Hg$ (% episodes)	20	9	0.04
$Pbto_2 < 15 mm Hg$ (% episodes)	16	5	0.01
$Pbto_2 < 10 mm Hg (\% episodes)$	7	0	0.01
ICP (mm Hg)	15 (3–24)	12 (0–18)	0.11
ICP $>$ 20 mm Hg (% episodes)	30	13	< 0.01
CPP (mm Hg)	70 (63–83)	72 (63–83)	0.39
CPP < 60 mm Hg (% episodes)	12	18	0.26

Bouzat et al, Crit Care Med 2015


What is the accuracy of multimodal monitoring to detect hypoperfusion?

27 TBI patients

Variable	Area Under the ROC Curve	95% CI
ROC curve for ICP monitoring alone	0.74	0.61–0.87
ROC curve for ICP and CMD monitoring	0.79	0.69–0.90
ROC curve for ICP and Pbto ₂ monitoring	0.84	0.74–0.93
ROC curve for ICP, Pbto ₂ , and CMD monitoring	0.88	0.79–0.96

Bouzat et al, Crit Care Med 2015

Spiotta, JNS 2010

Study first author	Number of	ICP and PbtO ₂ -based care		ICP/CPP-based care		Odds ratio	Common odds
	patients (evaluated)	Unfavorable outcome (# patients)	Favorable outcome (# patients)	Unfavorable outcome (# patients)	Favorable outcome (# patients)	(95% CI)	ratio (95% CI)
McCarthy et al. [21]	145 (111)	34	29	32	16	1.7	
Meixenberger et al. [22]	93 (91)	18	34	18	21	1.6	
Narotam et al. [23]	180 (166)	44	83	22	17	2.4	
Spiotta et al. [24]	123 (123)	25	45	32	21	2.7	2.1 (1.4–3.1)

 Table 3 Summary outcome from pooled analysis [21–24]

Outcome in these studies was reported using the Glasgow outcome score. *ICP* intracranial pressure, *CPP* cerebral perfusion pressure, *PbtO*₂ brain tissue oxygen monitor, *CI* confidence interval. Patients in the PbtO₂ group received both ICP/CPP and PbtO₂ guided therapy whereas patients in the ICP/CPP group received only ICP-based care

Nangunoori, Neurocrit Care 2011

TBI with GCS 3-8 and requirement of ICP monitoring 10 centers in North America Both groups received ICP- and Licox- $p_{bt}O_2$ - probes

Intervention group:

therapy according to ICP and $p_{br}O_2$ values (ICP < 20 mmHg, $p_{bt}O_2$ > 20 mmHg)

randomized vs.

Control group: therapy only according to ICP values (ICP < 20 mmHg)

Primary outcome: time of $p_{br}O_2 < 20 \text{ mmHg}$

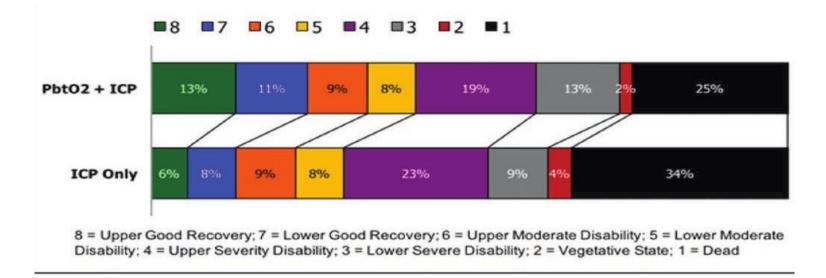

Okonkwo et al, CCM 2017

TABLE 2. Brain Tissue Oxygenation and Intracranial Pressure Parameters by Study Group

PbtO ₂ Metric	ICP Only, (<i>n</i> = 58), Mean ± sɒ; Median	PbtO ₂ + ICP, ($n = 55$), Mean ± sp; Median	р
Proportion of time below 20mm Hg	0.44 (0.31); 0.45	0.15 (0.21); 0.07	0.0000147
Average depth (mm Hg)	3.6 (3.9); 2.3	1.0 (2.0); 0.2	0.0000005
Area (over) the curve (mm Hg × hr) ^{b}	255 (291); 187	58 (97); 14	0.0000002
Intracranial Pressure Metric	ICP Only, (<i>n</i> = 57), Mean ± sɒ; Median	PbtO ₂ + ICP, (<i>n</i> = 55), Mean ± sɒ; Median	p
Proportion of time above 20 mm Hg	0.15 (0.19); 0.10	0.12 (0.19); 0.04	0.115
Average depth (mm Hg)	1.6 (6.9)ª; 0.4	0.7 (1.3)ª; 0.3	0.194
Average depth (mm Hg) (excluding the two extreme outliers)	0.7 (0.9); 0.4	0.6 (0.9); 0.2	0.195
Area under the curve (mm Hg \times hr) ^b	103 (408)ª; 36	50 (88)ª; 17	0.113
Area under the curve (mm Hg × hr) ^b (excluding the two extreme outliers)	50 (56); 34	41 (59); 15	0.115

Time of compromized $p_{bt}O2$ and ICP lower in the ICP+ $p_{br}O_2$ group

Okonkwo et al, CCM 2017

R

DRS at 6 Months

Mortality and worse outcome (GOSe) lower in the ICP+ $p_{bt}O_2$ group (p = ns)

Okonkwo et al, CCM 2017

Summary

- ICP and $p_{bt}O_2$ are outcome-relevant after TBI
- Weak evidence behind current Brain Trauma Foundation guidelines
- p_{bt}O₂ offers the opportunity of an individualized treatment
- More robust data than for other monitoring tools (NIRS, rCBF, S_{iv}O₂...)
- Goals: ICP < 20 mmHg, $p_{bt}O_2 > 20$ mmHg

Practical tips:

- Whom to monitor: severely affected, but salvagable patients
- Not every patient is salvable and not every low p_{bt}O₂ leads to worse outcome
- Outcome effects are difficult to see and most likely lower than anticipated

just in case: stefan.wolf@charite.de

