What works after aneurysmal SAH?

Multimodal Neuromonitoring and the Charité Experience CHARITÉ

Stefan Wolf stefan.wolf@charite.de

UNIVERSITÄTSMEDIZIN BERLIN

CHARITÉ.

KRANKENHAUS

- Most important tip
- What does work: Nimodipine
- Are Raumedic and Licox probes different?
- Evicence for p_{bt}O₂ monitoring
- How to influence a low p_{bt}O₂ reading
- What may work: lumbar drains

Use dedicated software for recording multimodal monitoring data at the bedside!

- Relevant work: The British Nimotop Trial
- Randomized multicenter (four sites) trial
- Nimotop 6 x 60 mg / d for 21 days vs Placebo

Klinik für Neurochirurgie

TABLE 1—Demographic data on and indices of severity of initial subarachnoid haemorrhage in patients treated with nimodipine or placebo. Values are numbers of patients unless stated otherwise

	Patients taking nimodipine (n=278)	Patients taking placebo (n=276)
Mean (SD) age (years)	46 (13)	48 (12)
Men	114	107
Women	164	169
Alcohol abuse	12	5
Diabetes mellitus	4	3
Chronic airways disease	5	7
Peripheral vascular disease		2
Smoker (>10 cigarettes/day)	120	143
Clinical grade:		
I	8	12
II	168	159
III	76	72
IV	19	25
V	7	8
Initial computed tomography	273	276

Pickard, BMJ 1989

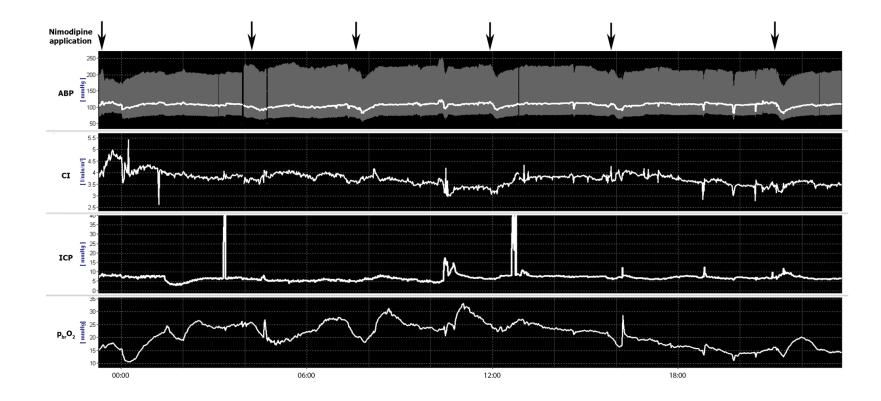
TABLE 1—Demographic data on and indices of severity of initial subarachnoid haemorrhage in patients treated with nimodipine or placebo. Values are numbers of patients unless stated otherwise

	Patients taking nimodipine (n=278)	Patients taking placebo (n=276)	
Time from ictus to angiography (days)	5.5	5.1	
Aneurysm:			
Proved	187	181	
Multiple	40	29	
Carotid	68	54	
Anterior cerebral	81	83	
Middle cerebral	54	49	
Posterior circulation	20	15	
Spasm present	54	46	
Operations:			
No	165	154	
Time from ictus to operation (days) range)	10.8 (2-60)	11-3 (2-116	

Pickard, BMJ 1989

Klinik für Neurochirurgie

TABLE II—Effect of nimodipine on incidence of cerebral infarction and outcome after subarachnoid haemorrhage. Values are numbers (percentages) of patients unless stated otherwise

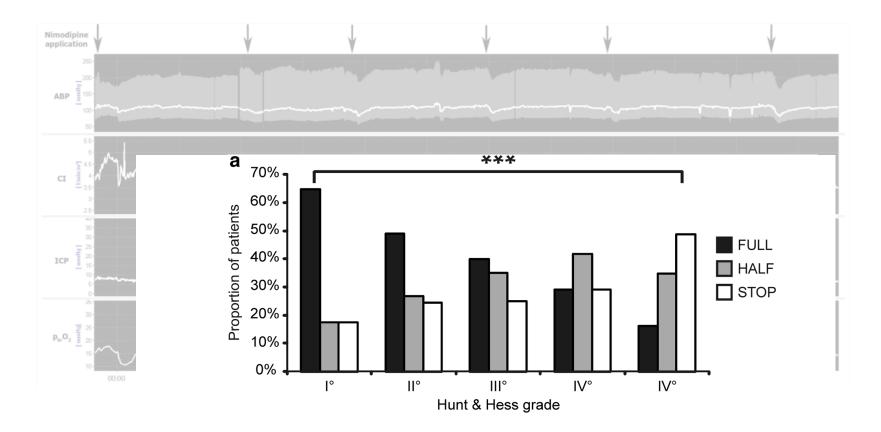

	Patients taking nimodipine (n=278)	Patients taking placebo (n=276)	Relative reduction (%)	95% Confidence interval	Significance (p value)
Cerebral infarct	61 (22)	92 (33)	34	13 to 50	$0.003 (\chi^2 = 8.99; df = 1)$
Poor outcome	55 (20)	91 (33)	40	20 to 55	<0.001 ($\chi^2 = 12.41$; df = 1)
Rebleed	25 (9)	38 (14)	35	-5 to 59	$0.077 (\chi = 3.13; df = 1)$

" In Glasgow, the prevalence of reported alcohol abuse was lowest (2%) ..."

" The protocol allowed for adjustment of dose if hypotension occured, but this was not found to be necessary ..."

Pickard, BMJ 1989

Nimotop: mean arterial blood pressure drops



Sandow, Neurocritical Care 2016

Klinik für Neurochirurgie

Nimotop: mean arterial blood pressure drops

retrospective analysis, 270 SAH patients

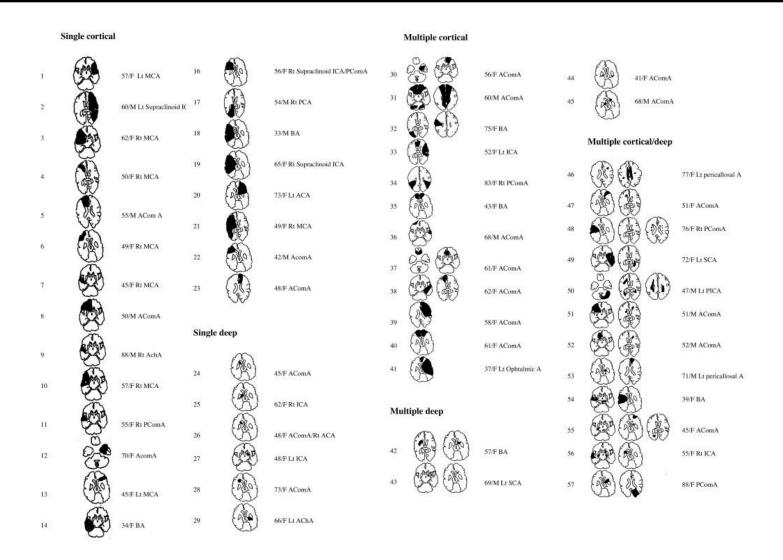
Sandow, Neurocritical Care 2016

Klinik für Neurochirurgie

	Univariate		Multivariate		
	OR (95 % CI)	р	OR (95 % CI)	р	
Age	1.036 (1.008, 1.066)	0.015	1.040 (1.007, 1.076)	0.022	
Male sex	0.764 (0.371, 1.535)	0.456	1.094 (0.466, 2.551)	0.835	
Hunt & Hess grade	1.780 (1.417, 2.272)	≤0.001	1.652 (1.221, 2.279)	0.002	
Fisher grade	1.739 (1.118, 2.832)	0.019	0.891 (0.498, 1.621)	0.700	
Angiographic vasospasm	3.021 (1.337, 7.532)	0.012	2.392 (0.942, 6.582)	0.076	
Nimodipine dosage	0.862 (0.789, 0.937)	≤0.001	0.895 (0.809, 0.987)	0.029	
Norepinephrine dosage	1.564 (1.216, 2.054)	≤0.001	1.081 (0.794, 1.486)	0.623	

Table 3 Risk factors for unfavorable clinical outcome (mRS >2)

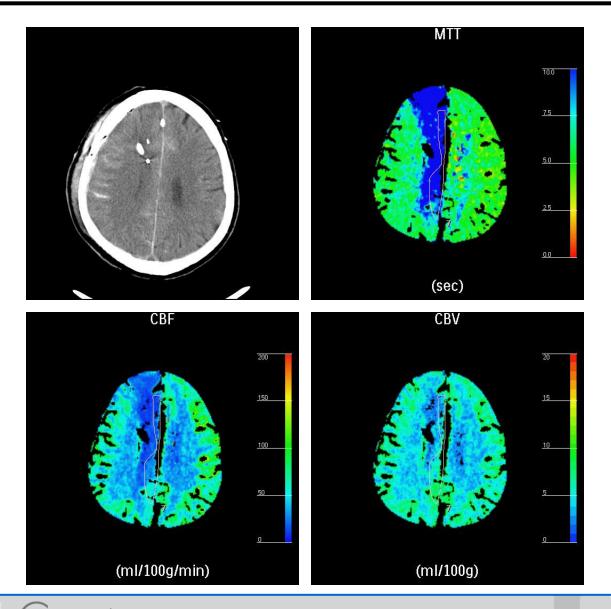
- Nimodipine dose is important
- If in doubt, increase noradrenalin and keep nimodipine dose
- iv.- nimodipine shows no advantage compared to oral


All patients: clinical exam

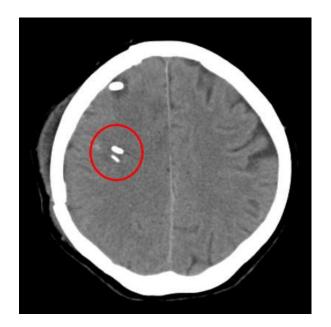
Poor grade patients:

- TCD
- CT angiography, CT perfusion give spatial resolution
- p_{bt}O₂ for temporal resolution

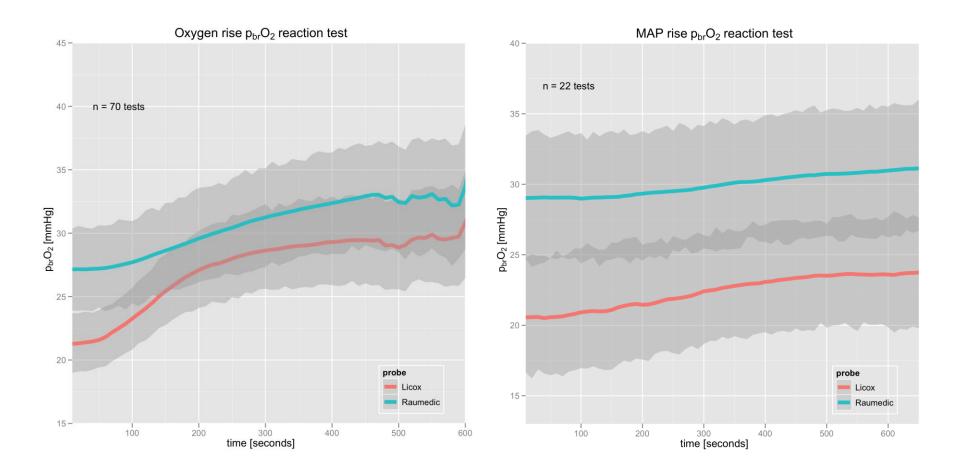
What do infarctions look like after SAH?


Rabinstein et al, Stroke 2005

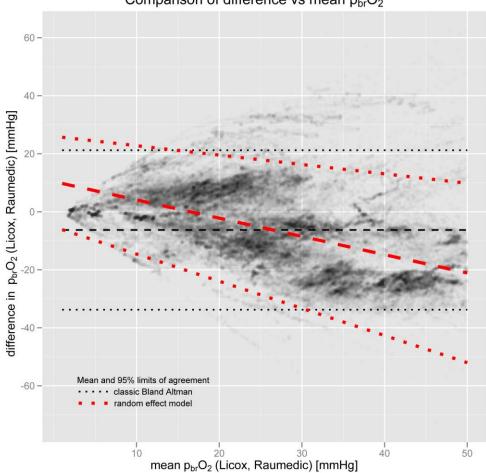
Probe implantation in the ACA territory


Implantation in the ACA territory - CT perfusion

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

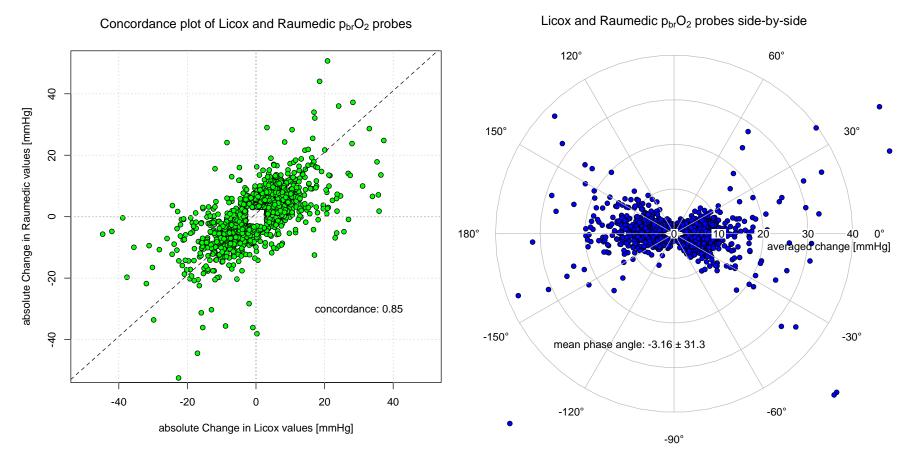

Are Licox- and Raumedic probes comparable?

- Eleven Patients (TBI, SAH) with a Licox and a Raumedic p_{bt}O₂ probe implanted in *tissue-at-risk*
- Measurement on average for 8.2 days
- Interventions with MAP und F_iO₂ rise
- Comparison of random samples with one hour latency


Dengler et al, ICM 2011 Dengler et al, Neurocrit Care 2012 Wolf, Acta NCH supp 2011

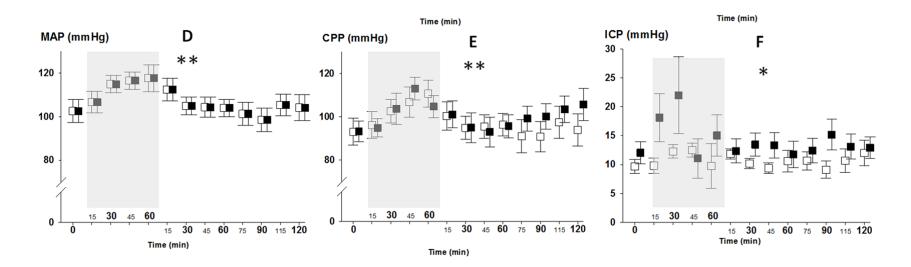
Intervention tests for Licox- and Raumedic- pbtO2 probes

Dengler et al, ICM 2011


Licox- and Raumedic- pbrO2 probes - pooled data

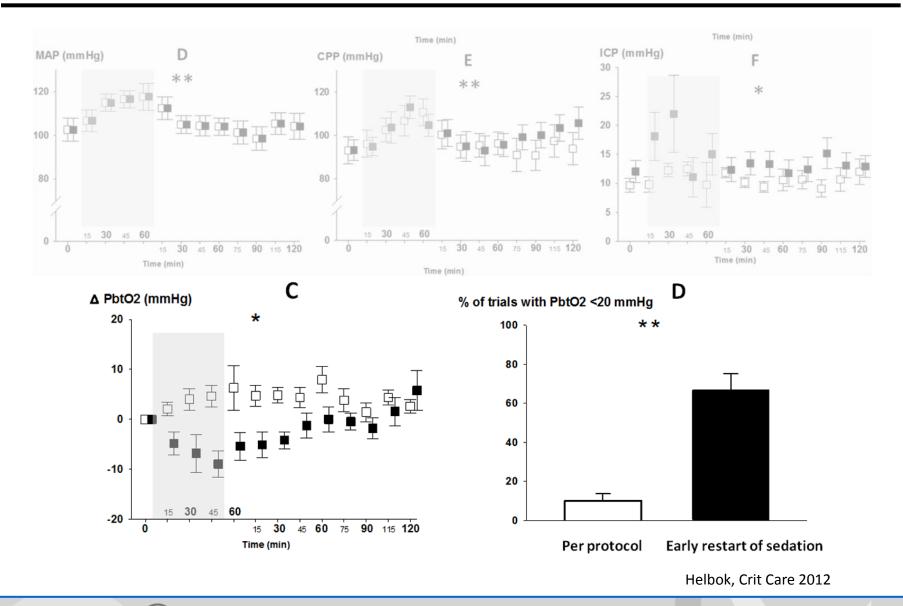
Comparison of difference vs mean pbrO2

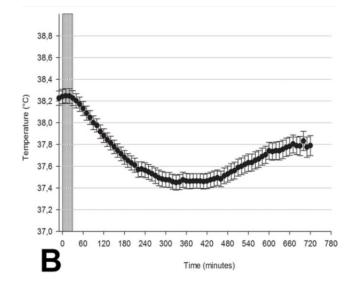
Wolf, Acta NCH supp 2012


Licox- and Raumedic - pbrO2 - probes: trend data

Trends of both probes correlate well Differences of absolute values: most likely tissue heterogeneity

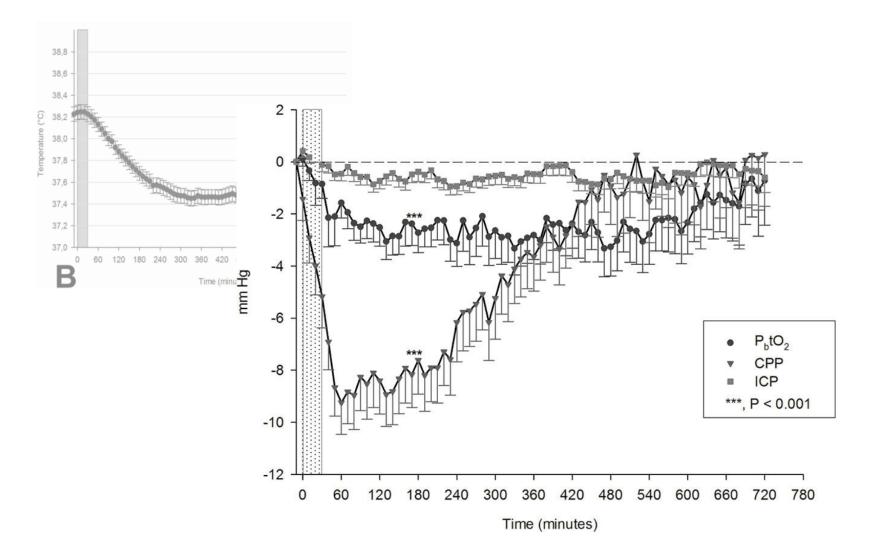
still unpublished


Weaning of mechanical ventilation after aneurysmal SAH

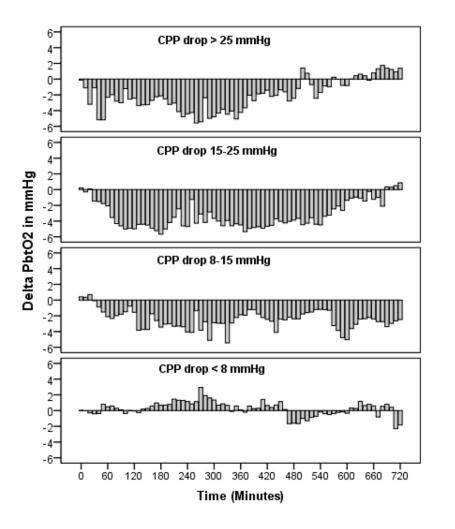

Helbok, Crit Care 2012

Weaning of mechanical ventilation after aneurysmal SAH

Decrease fever burden!

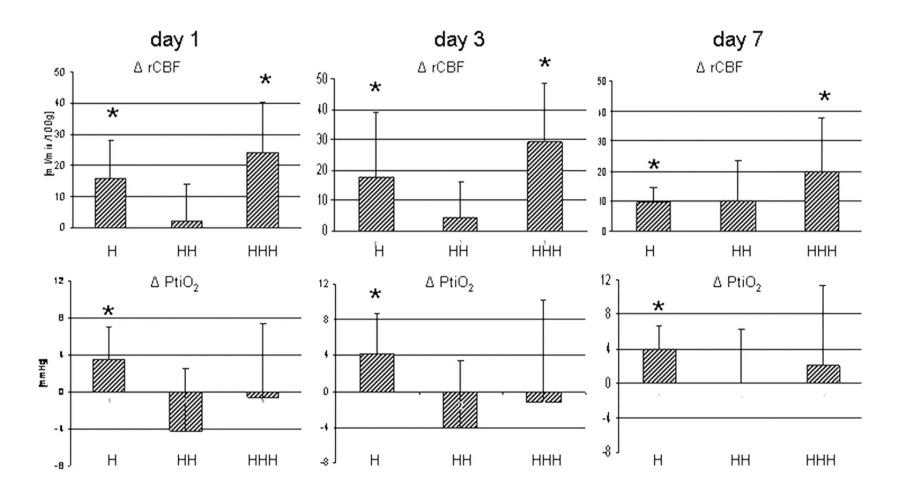


22 patients with aneurysmal SAH


Schiefecker, Crit Care 2013

Decrease fever - but be aware of side effects!

Schiefecker, Crit Care 2013

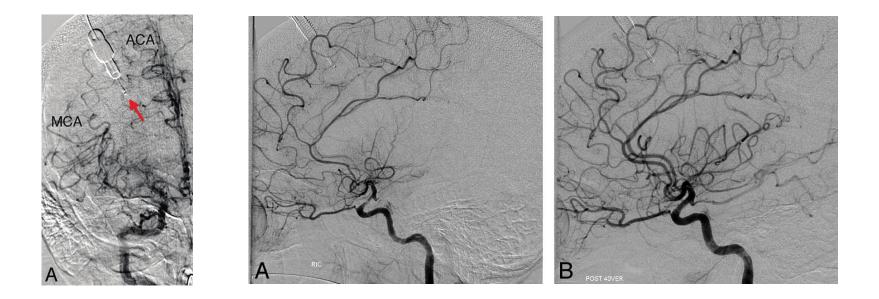


- $p_{br}O_2 < 20 \text{ mmHg}$:
 - mRS 1-4: $32 \pm 9\%$ monitoring time mRS 5,6: $66\% \pm 12\%$ monitoring time

p < 0.05

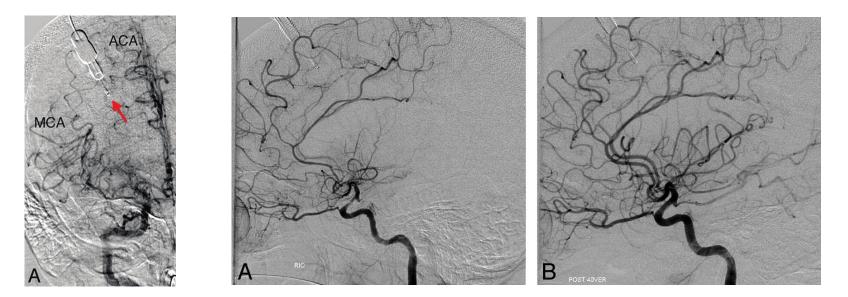
Schiefecker, Crit Care 2013

Monitoring of hyperdynamic therapy - rCBF and pbtO2


Muench, Crit Care Med 2007

Conclusions from Münch et al, CCM 2007:

- Not all components of HHH therapy are equally effective
- Hypervolemia does not seem to improve cerebral perfusion and seems to worsen ${\rm p}_{\rm br}{\rm O}_2$

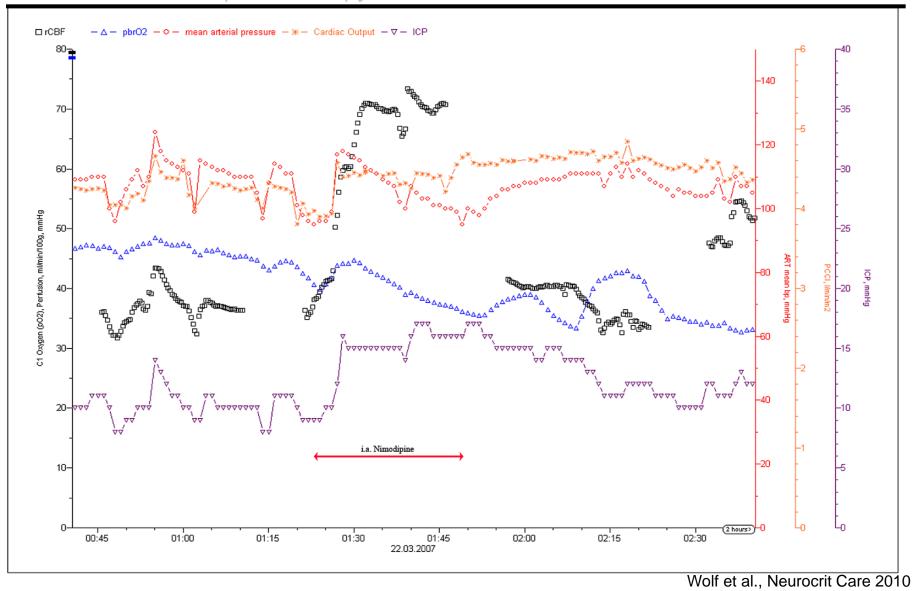

But:

- **No** vasospasm in rCBF measurements on day 7, but in 6 of 10 patients angiographically
- Hemedex rCBF is a promising technology, but has validity problems
- Very unrealistic MAP and volume parameters (RR_{mean} 140 mmHg, very high ITBVI (mean 1123 ml/kg/m²), cardiac output weakly documented, unclear duration of intervention

8 patients with an eurysmal SAH and $p_{bt}O_2$ monitoring Routine screening for vasospasm with TCD, PCT, CTA Endovascular therapy with i.a.-verapamil

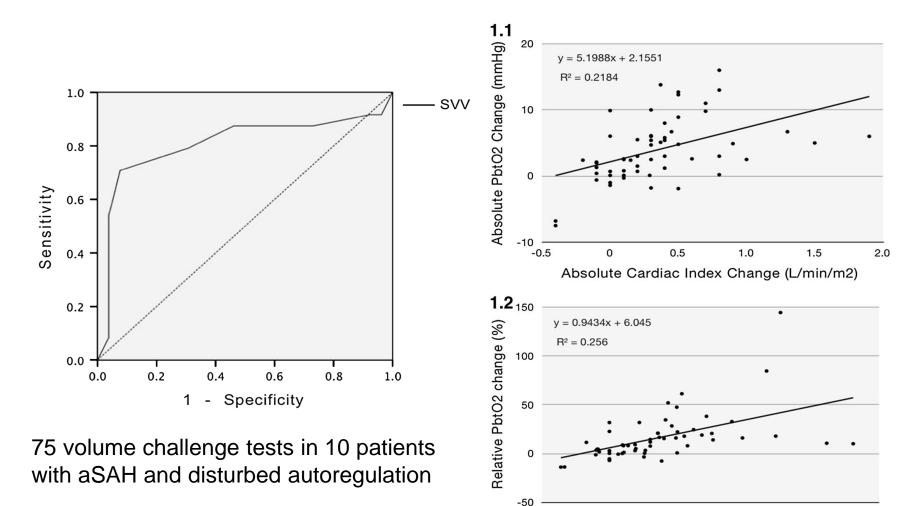
Deshajes, AJNR 2012

Mild-to-moderate and moderate-to-severe group physiologic parameters before and after spasmolytic therapy along with percentage improvement in PbO₂ after spasmolytic therapy


Vasospasm		Pb0 ₂ ª	CPP ^b	ICP ^b	Sa0 ₂ ^b	Fio2 ^b	% PbO ₂
Severity	Timing	(mm Hg \pm SE)	(mm Hg \pm SE)	(mm Hg \pm SE)	(mm Hg \pm SE)	(mm Hg \pm SE)	Improvement
Mild-mod	Prespasmolysis	35.2 ± 3.1	110.9 ± 3.5	5.4 ± 2.2	99.6 ± 0.3	55.7 ± 3.5	14
	Postspasmolysis	40.3 ± 3.1	107.9 ± 4.0	4.6 ± 1.0	99.5 ± 0.3	55.5 ± 4.1	
Mod-sev	Prespasmolysis	27.3 ± 3.1	116.7 ± 3.8	5.8 ± 1.3	99.8 ± 0.2	57.5 ± 6.1	40
	Postspasmolysis	38.4 ± 3.2	113.9 ± 4.4	7.8 ± 1.9	99.2 ± 0.5	57.0 ± 6.1	

Note:—Mild-mod indicates mild-moderate; Mod-sev, moderate-severe. ^a Statistical significance ($P \le .05$). ^b No statistical significance (P > .05).

Deshajes, AJNR 2012



Endovascular vasospasm therapy II

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

Volume status, cardiac output and pbtO2

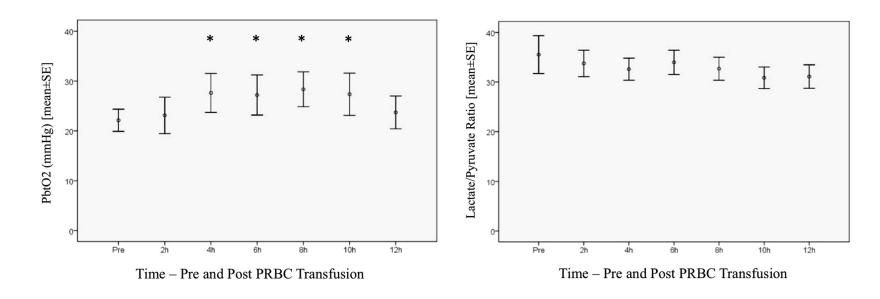
-15

0

Kurtz, Neurocrit Care 2014

60

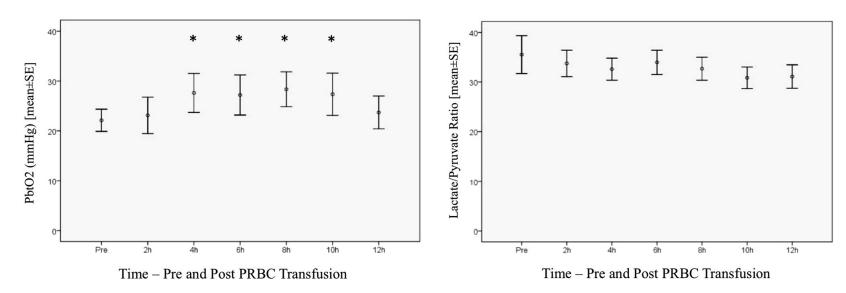
45


Department of Neurosurgery

Relative Cardiac Index Change (%)

30

15

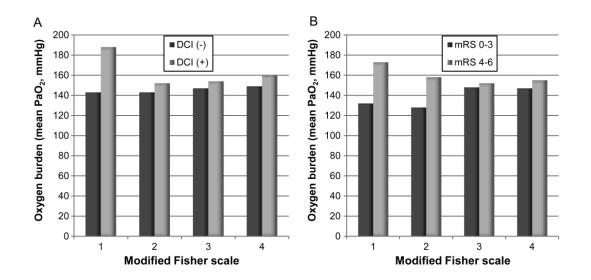

Transfusion?

15 patients with aneurysmal SAH Target Hb 8 g/dl unless evidence for ischemia

Kurtz, Neurocrit Care 2015

Transfusion

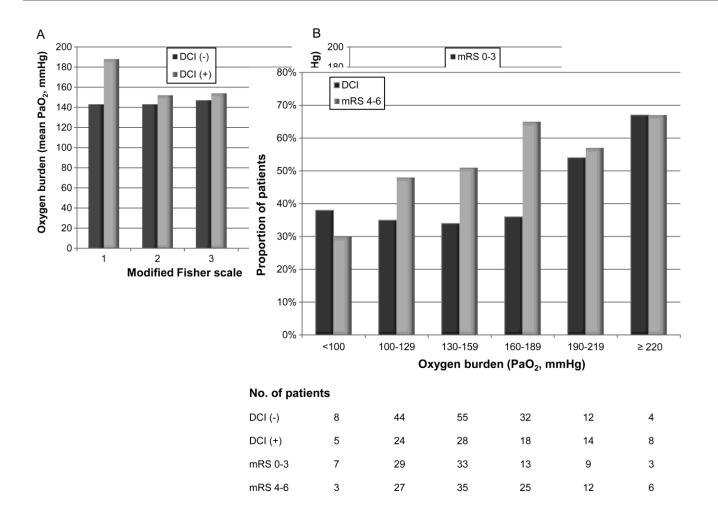
Variables	Univariate			Multiivariate		
	Coefficient	95 % CI	Р	Coefficient	95 % CI	Р
Δ Hemoglobin (g/dL)	2.20	0.91–3.49	0.001	1.39	0.09–2.69	0.036
Δ Cerebral perfusion pressure (mmHg)	0.11	0.11-0.12	< 0.001	0.11	0.05-0.17	< 0.001
Δ LPR	-0.31	-0.53-(-0.09)	0.006	-0.201	-0.36-(-0.04)	0.014
Δ End-tidal CO ₂ (mmHg)	0.64	-0.76-2.04	0.37			
Δ SO ₂ (%)	2.13	2.13-2.13	< 0.001	0.128	-1.07-1.33	0.84
Baseline PO ₂ (mmHg)	-0.12	-0.44-0.02	0.447			
Baseline FiO ₂ (%)	-3.77	-15.55-8.01	0.53			
Baseline PCO ₂ (mmHg)	-0.21	-0.54-0.12	0.21			


Univariate and multivariate linear regression models using GEE

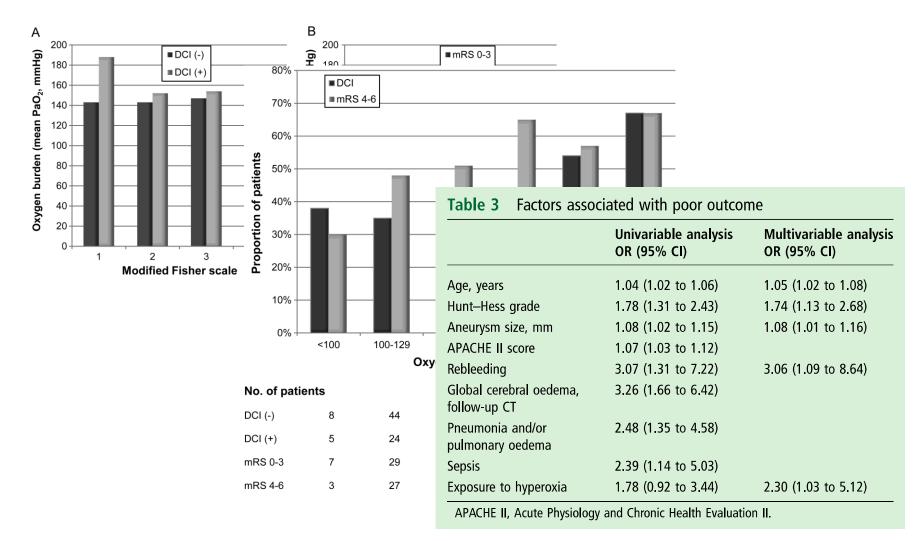
Transfusions improve $p_{bt}O_2$, but no clear effect on metabolism

Kurtz, Neurocrit Care 2015

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN


Oxygen - friend or foe?

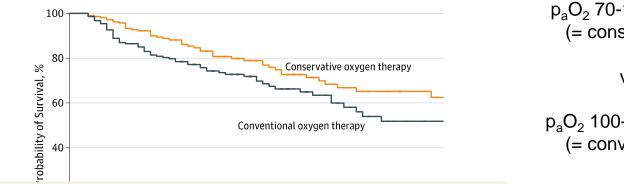
Jeon et al, JNNP 2014



Oxygen - friend or foe?

Jeon et al, JNNP 2014

Oxygen - friend or foe?



Only systemic, no tissue oxygenation monitoring in this study

Jeon et al, JNNP 2014

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

Figure 2. Probability of Survival From Study Inclusion (Day O) Through Day 60 for Patients in the Conservative and Conventional Oxygen Strategy Groups

p_aO₂ 70-100 mmHg (= conservative)

VS.

p_aO₂ 100-150 mmHg (= conventional)

Oxygen Therap	y, No. (%)			
Conservative (n = 216)	Conventional (n = 218)	Absolute Risk Reduction (95% CI)	P Value	
25 (11.6)	44 (20.2)	0.086 (0.017-0.150)	.01	
8 (3.7)	23 (10.6)	0.068 (0.020-0.120)	.006	
4 (1.9)	14 (6.4)	0.046 (0.008-0.088)	.02	
11 (5.1)	22 (10.1)	0.050 (0.000-0.090)	.049	
-	Conservative (n = 216) 25 (11.6) 8 (3.7) 4 (1.9)	(n = 216) (n = 218) 25 (11.6) 44 (20.2) 8 (3.7) 23 (10.6) 4 (1.9) 14 (6.4)	Conservative (n = 216) Conventional (n = 218) Absolute Risk Reduction (95% CI) 25 (11.6) 44 (20.2) 0.086 (0.017-0.150) 8 (3.7) 23 (10.6) 0.068 (0.020-0.120) 4 (1.9) 14 (6.4) 0.046 (0.008-0.088)	

Patients discharged alive from the hospital were considered to have survived, and their median follow-up was 22 days for the conservative group (interquartile range, 13-37) and 24 days for the conventional group (interquartile range, 15-35).

Girardis, Jama 2016

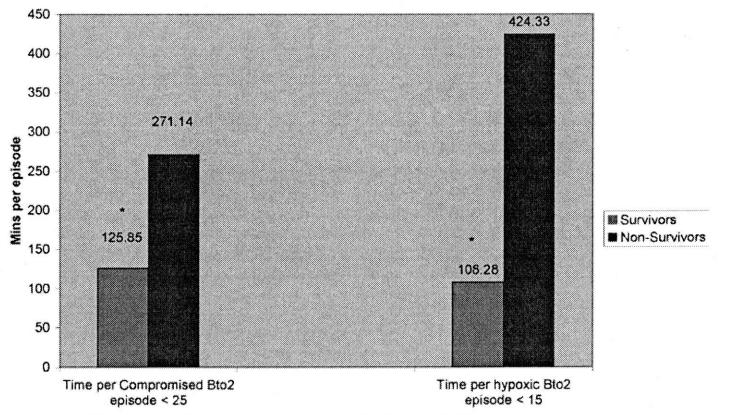
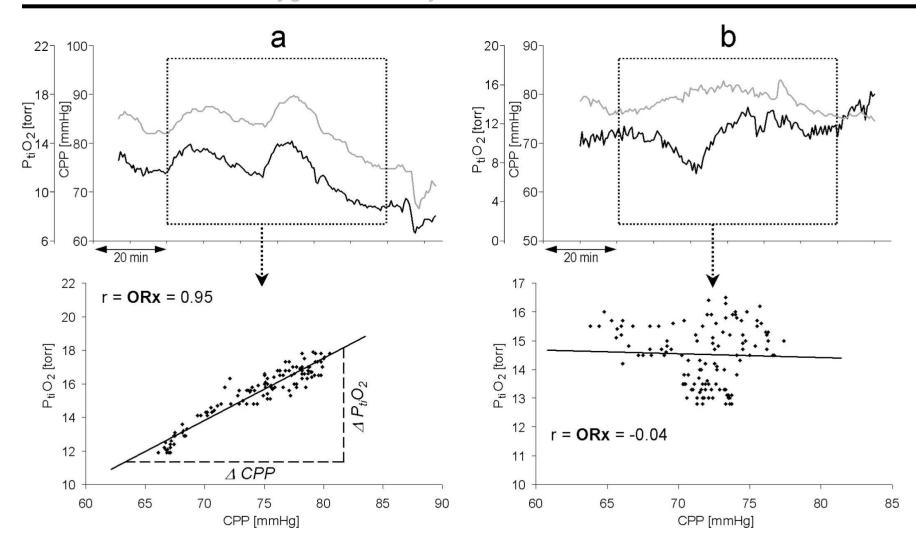
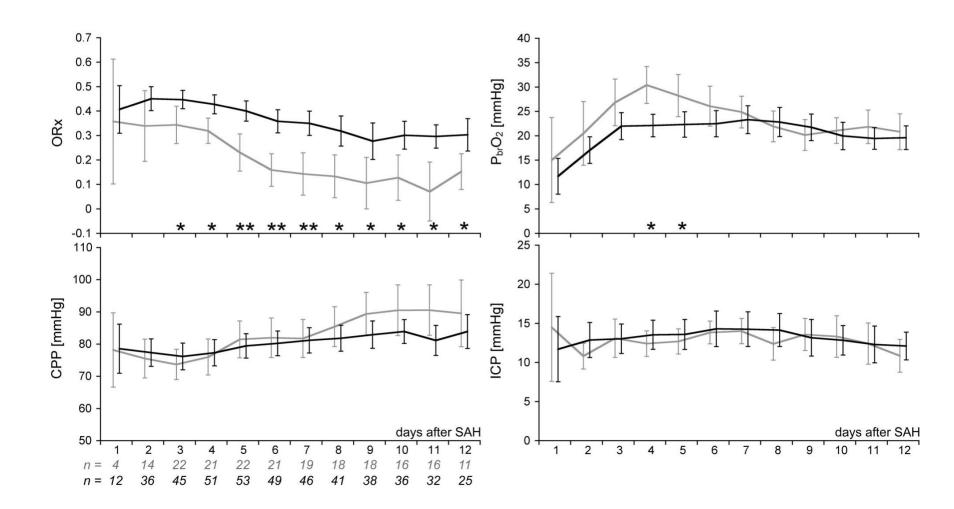



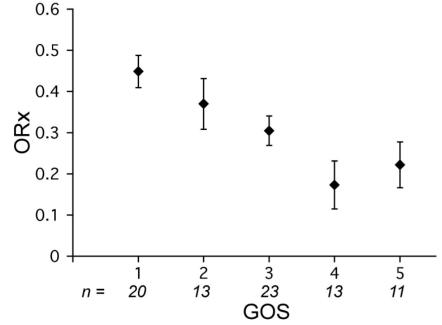
FIG. 2. Histogram illustrating relationship between survival after SAH and mean time of compromised cerebral oxygenation (< 25 mm Hg) and cerebral hypoxia (< 15 mm Hg). *p < 0.05.

Ramakrishna, JNS 2008


Determination of the Oxygen Reactivity Index ORx

Jaeger, CCM 2006

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN


ORx, ICP, CPP und pbrO2 vs outcome after SAH

Jaeger, Stroke 2012

Table 2.Neuromonitoring Characteristics of Favorable (GOS4–5) and Unfavorable (GOS 1–3) Outcome Groups*

Variable	Favorable (n=24)	Unfavorable (n=56)	P Value
ORx	0.19 (±0.10)	0.37 (±0.11)	< 0.001
CPP, mm Hg	83.5 (±13.8)	80.4 (±11.6)	0.70
P _{br} O ₂ , mm Hg	24.9 (±6.6)	21.8 (±6.3)	0.048
ICP, mm Hg	12.7 (±3.6)	13.4 (±6.0)	0.98
Start of monitoring after SAH, h	50.8 (±40.9)	47.8 (±36.5)	0.55
End of monitoring after SAH, h	240.8 (±68.9)	236.0 (±64.4)	0.62
Time of valid monitoring, h	164.8 (±55.5)	164.8 (±61.9)	0.90

Values are mean \pm SD; *P* for Mann-Whitney *U* test.

Jaeger, Stroke 2012

Cerebro-spinal fluid after SAH

Klimo et al, JNS 2004

Lumbar drainage after clipping

	Group		
Outcome	LD	Control	p Value
no. of patients	81	86	
primary measure			
clinical vasospasm (%)	14 (17)	44 (51)	< 0.001
angioplasty/papaverine (%)	14 (17)	39 (45)	0.001
vasospasm-related			
infarction (%)	6 (7)	23 (27)	0.008
disposition (%)	2.2		0.002
home	44 (54)	22 (25)	
inpatient rehabilitation	26 (32)	41 (48)	
extended care facility	9 (11)	19 (22)	
death	2 (3)	4 (5)	
GOS score (%)*			< 0.001
1	2 (3)	4 (5)	
2	0	4 (5)	
$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	13 (16)	31 (40)	
	8 (10)	12 (15)	
4 5	56 (71)	27 (35)	
secondary measure		()	
LOS (mean no. of days)			
ICU	13	16	0.0077
hospital	17	21	0.0014
shunt (%)	19 (24)	28 (36)	0.145

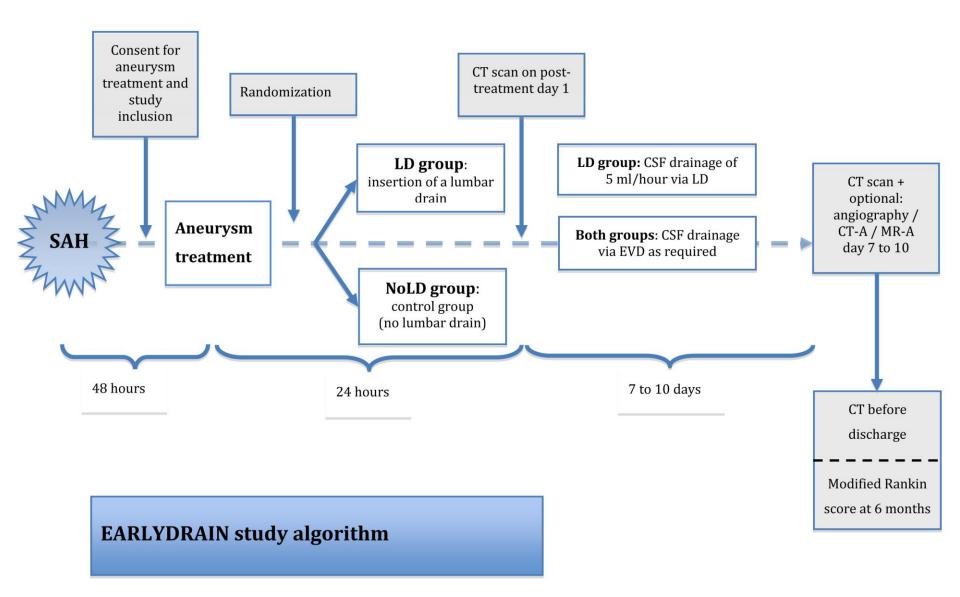
Klimo et al, JNS 2004

• Published retrospective works are in favor of lumbar drains

But....

- Patient distribution not fairly balanced between treatment groups
- Retrospective design
- No data on the amount of drainage (5-10-... ml/h)
- Long term outcome not documented

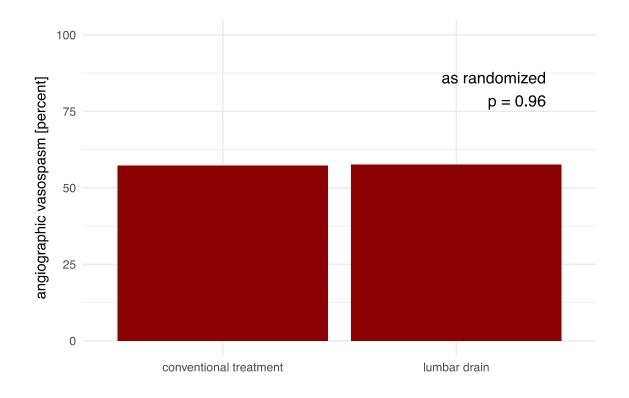
- Prospective data not supportive
 - predominantly good grade patients
 - (in contrast to more poor-grade patients in retrospective trials)
 - underpowered for effect size


(AI-Tamimi et al, Stroke 2012)

Does an early lumbar CSF drainage improve clinical outcome after aneurysmal subarachnoid hemorrhage?

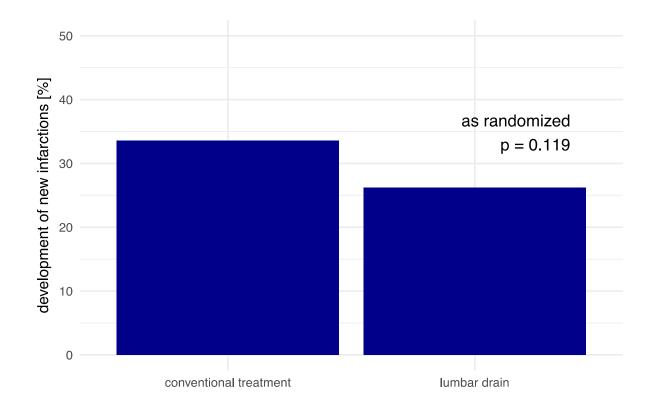
Does the early lumbar CSF drainage decrease the incidence of cerebral vasospasm after aneurysmal SAH?

Bardutzky et al., Trials 2011

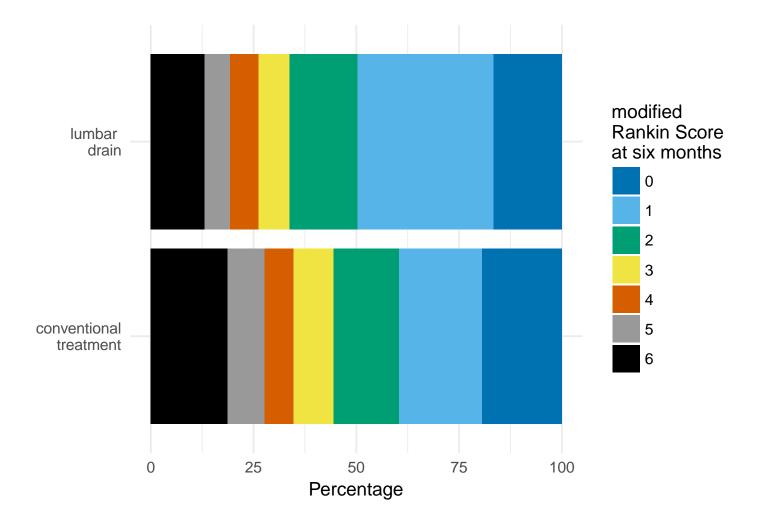

Bardutzky et al., Trials 2011

	LD	No LD
Ν	145 (100%)	145 (100%)
Age	54 (48 - 63)	56 (47 - 65)
female Sex	98 (68%)	99 (68%)
Hunt-Hess grade 1 2 3 4 5 missing data	28 (19%) 41 (28%) 25 (17%) 20 (14%) 30 (21%) 1 (1%)	25 (17%) 29 (20%) 34 (23%) 24 (17%) 33 (23%) 0 (0%)
missing data	1 (1%)	0 (0%)

	LD	No LD
modified Fisher grade 2 – thin SAH 3a – thick SAH w/o IVH 3b – thick SAH with IVH 4a – SAH + ICH w/o IV 4b – SAH + ICH with IVH		2 (1%) 47 (32%) 45 (31%) 11 (8%) 40 (28%)
missing data Number of Aneurysms 1 2 3 >3	1 (1%) 100 (69%) 33 (23%) 8 (6%) 4 (3%)	0 (0%) 113 (78%) 21 (14%) 6 (4%) 5 (3%)
Aneurysm treatment clipping coiling missing data	77 (53%) 65 (45%) 3 (2%)	70 (48%) 73 (50%) 2 (1%)


Secondary endpoint: angiographic vasospasm ("as randomized" data)

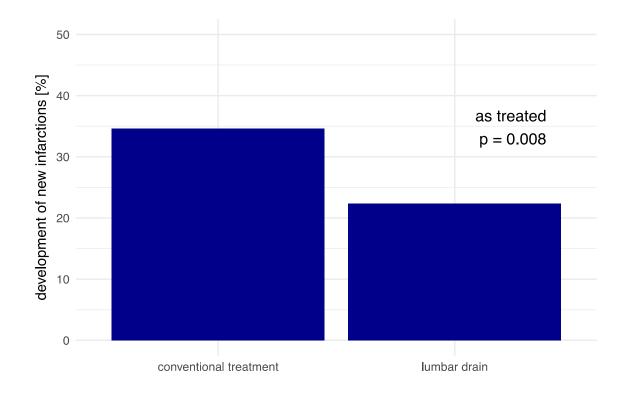
Rate of angiographic vasospasm: 57% CTA or DSA (6% MR angiography) on clinical suspicion or as routine on day 7-10


Secondary endpoint: new infarction at discharge ("as randomized" data)

Overall rate of new infarction: 30%

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

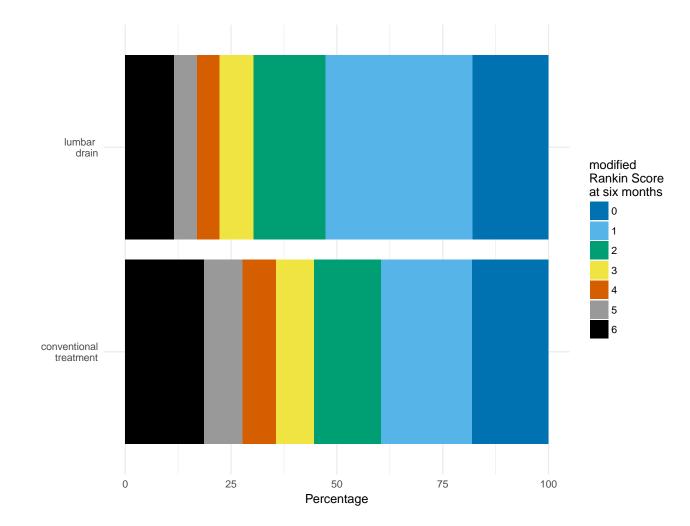
Outcome – "as randomized" data



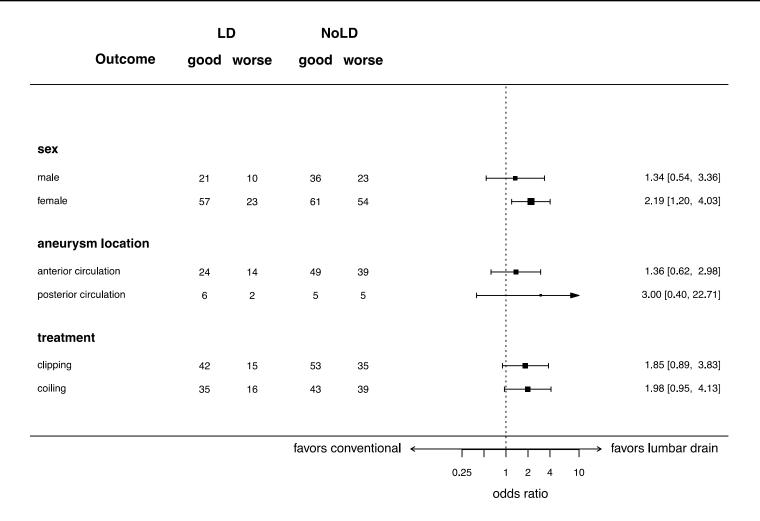
6-months outcome data from 289 patients

Main reasons for protocol deviations were (decreasing order):

- Hardware failure
- Safety concerns in the LD group
- Requirement of full anticoagulation after coiling (therefore no placement of LD possible)
- Assignment error
- Request of the consulting neurologist for treatment with a lumbar drain


Secondary endpoint: new infarction at discharge ("as treated" data)

Overall rate of new infarction: 30%


CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

Outcome – "as treated" data

6-months outcome data from 289 patients

Who may benefit? (subgroup analysis – "as treated" data)

based on 6-months outcome data from 289 patients good outcome: mRS 0, 1 or 2

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

Who may benefit? (subgroup analysis – "as treated" data)

	LD		NoLD		
Outcome	good	worse	good	worse	
Age					
< 40 years	9	1	14	6	→ 3.86 [0.40, 37.58]
40 to 49 years	15	4	26	14	2.02 [0.56, 7.26]
50 to 59 years	39	13	31	17	1.65 [0.69, 3.90]
60 to 69 years	10	9	14	20	1.59 [0.51, 4.91]
> 70 years	5	7	13	22	■ 1.21 [0.32, 4.60]
Clinical grade					
Hunt-Hess 1	19	3	24	6	⊥ 1.58 [0.35, 7.17]
Hunt-Hess 2	26	8	29	7	■ 0.78 [0.25, 2.46]
Hunt-Hess 3	12	7	29	11	■ 0.65 [0.20, 2.08]
Hunt-Hess 4	10	3	7	24	⊢ −−−− 11.43 [2.45, 53.34]
Hunt-Hess 5	10	13	9	31	2.65 [0.87, 8.03]
Radiological grade					
Fisher 2 – thin SAH	3	1	4	0	0.26 [0.01, 8.52]
Fisher 3a - thick SAH w/o IVH	-	5	40	11	1.16 [0.35, 3.77]
Fisher 3b - thick SAH w/ IVH	27	14	35	22	1.21 [0.52, 2.80]
Fisher 4a - ICH w/o IVH	10	2	7	9	
Fisher 4b - ICH w/ IVH	16	12	12	37	⊢ 4 .11 [1.52, 11.09]
			favors o	conventional ^{<}	favors lumbar drain
					0.25 1 2 4 10
					odds ratio

based on 6-months outcome data from 289 patients good outcome: mRS 0, 1 or 2

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

- Nimodipine: still in use, class I evidence
- Monitoring: may facilitate recognition of unfortunate effects in poor-grade patients
- Use dedicated software for data acquisition
- Combine different methods (= *multimodal monitoring*), or a second $p_{bt}O_2$ probe
- Perfusion CT is your friend. Repeat it!
- Lumbar drains: promising in younger, more severely affected patients
- p_{bt}O₂ monitoring: number needed to treat unknown so far
 (= we need further research please listen, dear RAUMEDIC people!)

just in case: stefan.wolf@charite.de

